A Characterization of All Retrofit Controllers

June 29th, 2018
Hampei Sasahara, Takayuki Ishizaki, Masaki Inoue, Tomonori Sadamoto, Jun-ichi Imura
Tokyo tech., Japan
Outline

1. Introduction

2. Retrofit Control
 - Definitions
 - Retrofit Controller
 - Performance Analysis

3. Numerical Example
 (Power System)
design of sub-controllers in a large-scale system

Traditionally Treated Difficulty:
- sparsity constraints/communication delay
- information constraints

Roughly, \(QI \iff \text{tractable (convex)} \) (quadratic invariance)

Remaining Issues
- scalability issue
- model unavailability
- existence of multiple operators

Scalability Issue

collectors are synthesized in a **centralized** manner under QI

not scalable with the size of the plant

How to resolve this issue?
How to synthesize a controller with the access only to the partial model information?

consider a different situation

entire model: unavailable
partial model: available

- too large for modeling
- security of privacy

How to synthesize a controller with the access only to the partial model information?
Under Multiple Operators

suppose: multiple operators

other operators design independently

other’s control actions may vary

How to synthesize a controller that can deal with the possibly varying controllers?
Example: Power System

- multiple ISOs (independent system operator)
- too large to capture the entire system model
- other ISOs may change their control policy

Objective:

improve the control performance by attaching (retrofitting) a controller only with the partial model
Retrofit Control

Existing: entire system model

novel: local model information

Our proposal

retrofit control: improving local performance

today’s talk: necessary and sufficient structure for all retrofit controllers

Outline

1. Introduction

2. Retrofit Control
 - Definitions
 - Retrofit Controller
 - Performance Analysis

3. Numerical Example (Power System)
Definition: Retrofit Controller

case 1: G_E is any element s.t. G_P is stable

G_P: the interconnected system (G, G_E)

case 2: G_E' is any element s.t. G_P is stable

K is called a retrofit controller if it stabilizes the system for any G_E s.t. G_P is stable
Equivalent Condition

\(\omega, \nu \): interconnection signals

\(Y, u \): measurement, control

Theorem

\[K \text{ is a retrofit controller} \]

\[\iff G_{wu} Q G_{yu} = 0 \]

and \(Q \in \mathcal{RH}_\infty \)

\[Q = (I - KG_{yu})^{-1} K \]

\(G \): assumed to be stable
Equivalent Condition

\(\omega, \nu \): interconnection signals

\(y, u \): measurement, control

Theorem

\[K \text{ is a retrofit controller} \iff G_{wu} Q G_{yu} = 0 \]

and \(Q \in \mathcal{RH}_\infty \)

\[Q = (I - KG_{yu})^{-1} K \]

\(G \): assumed to be stable
Equivalent Condition

\[\mathcal{W}, \mathcal{U} : \text{interconnection signals} \]
\[\mathcal{Y}, \mathcal{U} : \text{measurement, control} \]

Theorem

\[K \text{ is a retrofit controller} \]
\[\iff G_{wv} Q G_{yu} = 0 \]
\[\text{and} \quad Q \in \mathcal{RH}_\infty \]

\[Q = (I - KG_{yu})^{-1} K \]

\(G \): assumed to be stable
Equivalent Condition

\(\omega, \nu \): interconnection signals

\(Y, \mu \): measurement, control

Theorem

\(K \) is a retrofit controller

\[\iff G_{wu} Q G_{yu} = 0 \]

and \(Q \in \mathbb{RH}_\infty \)

\[Q = (I - KG_{yu})^{-1} K \]

\(G \): assumed to be stable
Equivalent Condition

\(\omega, \nu \): interconnection signals
\(\gamma, u \): measurement, control

Theorem

\(K \) is a retrofit controller

\[\Leftrightarrow G_{wu} Q G_{yu} = 0 \]

and \(Q \in \mathcal{RH}_\infty \)

\[Q = (I - KG_{yu})^{-1} K \]

\(G \): assumed to be stable

constrained Youla parameterization

\[Q_E G_{wu} Q G_{yu} \]

loop transfer matrix

because \(Q_E \): arbitrary

\[G_{wu} Q G_{yu} = O \]
Two Classes of Retrofit

1. Output rectifying retrofit controller
 \[Q G_{yv} = O \]

2. Input rectifying retrofit controller
 \[G_{wu} Q = O \]

simple structure, easy to design
Output Rectifying Retrofit Controller

Assumption

\(Q G_{yv} = O \)

\(\mathcal{U} \) can be fed back

Theorem

All output rectifying retrofit controllers have the structure

\(\hat{K} : \) stabilizes \(G_{yu} \)

(locally stabilizing controller)
resultant control system

\[K \text{ : output-rectifying retrofit controller} \]
both should be taken into account
Outline

1. Introduction

2. Retrofit Control
 - Definitions
 - Retrofit Controller
 - Performance Analysis

3. Numerical Example
 (Power System)
PV-Integrated
IEEJ EAST30 model
(The Institute of Electrical Engineers of Japan)

Fukushima
Parameters

- initial deviation at the 2nd generator
- objective: suppressing peak value

PV: 30\% of total demand

\# of gen.: 30
whole dim.: 390
Results(1)

frequency deviation

free response peak: 0.0904 [Hz]

ignoring env. (infinite-bus)

destabilized
Results (2)

frequency deviation

- Free response peak: 0.0904 [Hz]
- Retrofit Control (low gain) peak: 0.0753 [Hz]

Stability is preserved

Improvement: 1.59 [dB]
Results (3)

frequency deviation

- **free response**
 - peak: 0.0904 [Hz]

- **Retrofit Control (high gain)**
 - peak: 0.0505 [Hz]

improvement: 5.06 [dB]
Conclusion

Problem:

novel control theory for large-scale systems

→ Retrofit Control
 - high effectiveness

Thank you for your kind attention