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Performance Improvement via Iterative Connection
of Passive Systems
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Abstract—This paper addresses model-set-based quantitative
analysis of feedback systems. In particular, we find a model
set describing the subsystems such that the performance im-
provement of the feedback system is achieved. To this end,
we introduce the parameter-integrated passivity to accurately
describe each passive subsystem and their feedback system; a
model set describing passive systems is characterized by the two
matrix parameters. The matrix parameters enable to evaluate
the L1-gain “of the model set”, which is defined as the L1-gain
of the worst-case system in the model set. With the parameter-
integrated passivity, the quantitative analysis of a feedback
system composed of two passive subsystems is provided as the
parameter transition. Then, we find conditions on the matrix
parameters to achieve the performance improvement such that
the L>-gain of the model set describing the feedback system is
strictly less than that describing the subsystems. Subsequently,
the performance improvement of the feedback system is extended
to that of an iterative feedback system, which is a network
system constructed by the feedback connection of multiple
subsystems in a step-by-step manner. Then, we find conditions
on the passivity parameters describing the baseline subsystem to
achieve a gradual performance improvement with the subsystem
connection.

Index Terms—Passivity, Dissipativity, Model-set-based analy-
sis, Lo-gain

I. INTRODUCTION

HE control problems for large-scale systems have been
extensively studied in the last several decades. A typical
example is power system design. Power systems in recent
years have been gradually incorporating a large number of
renewable energy (RE) resources, and have therefore more
complex and larger in scale. At any step of the construction,
the demand and supply balance in the entire power system
must be maintained. We need to develop the design and control
strategy in a step-by-step manner for large-scale systems.
Let us consider the case where a baseline system is envolved
by gradually connecting multiple subsystems in a step-by-step
manner as illustrated in Fig. 1. Then, the multiple subsystems
are implemented into a baseline system in a decentralized
manner. In addition, the implementation proceeds as a module
connection. For practical reasons, not only the implementation
but also the design process should be done in a modularized
manner [1] (this is called distributed design [2]); each subsys-
tem is designed independently of the others except for their
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Fig. 1. Evolution of a baseline system >¢ by gradually connecting multiple
subsystems XJ; in a step-by-step manner.

brief specification. Despite the difficulty of the modularized
design, it is necessary to achieve stability and sufficient control
performance of the entire control system.

Passivity is one of the key properties for realizing the
modularized design of large-scale systems [1]. The passivity
theorem [3] states that the feedback system composed of two
passive systems is also passive. In Fig. 1, we consider the
case where the baseline system and each subsystem have the
passivity property. For the design of the subsystems stabilizing
the entire control system, we do not require any models
of the baseline system and subsystems, but require only
their passivity instead. In fact, many papers [4]-[12] address
passivity-based analysis and design, e.g., cooperative control
[4]-[6], synchronization problem [7], stability analysis of
power systems [9]-[11], and biological network analysis [12].
Passivity is utilized in these studies for qualitative analysis
such as stability, consensus, and synchronization.

Other papers [13]-[16] address the guantitative analysis of
feedback systems composed of two passive systems. The pa-
pers integrate scalar parameters into the passivity definition to
quantify the passivity level, e.g., y-passivity [13] and passivity
indices [15], [16]. By employing the scalar parameters, the
papers are able to derive more detailed quantitative analysis
than the original passivity theorem [3]. For example, Lo-gain
evaluation is performed in [14], [16].

In this paper, we address the problem of the performance
improvement via the feedback connection of passive systems.
Matrix parameters are integrated into the passivity, and they
contribute to characterize passive systems more flexibly than
the scalar parameters integrated in previous works [13]-[16].
The Ls-gain of the model set describing passive systems is
defined as the worst-case system in the model set. We connect
two passive systems described by the model set, to construct
a passive feedback system. The feedback connection of the
performance-integrated passive systems inherits the passivity
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in the disconnected case. The quantitative analysis of the
feedback system is provided as the parameter transition. Then,
we find conditions on the passivity parameters to achieve
the performance improvement such that the Lo-gain of the
model set describing the feedback system is strictly less than
that describing the subsystems. It should be emphasized that
only the passivity parameters characterizing each subsystem is
utilized for the quantitative analysis of the feedback system,
while the detailed model of the subsystem is not utilized. In
this sense, the problem addressed in this paper is the model-
set-based analysis of the feedback system.

Subsequently, the performance improvement of the feedback
system is extended to that of an iferative feedback system,
which is a network system constructed by the feedback con-
nection of multiple subsystems in a step-by-step manner. The
extension is motivated by its applicability to the modularized
design of connecting subsystems in a step-by-step manner as
illustrated in Fig. 1. By employing the matrix parameters, this
paper is able to find a model set describing subsystems for a
gradual improvement of the iterative feedback system, while
the previous works are unable to do it. The paper [17] is
a preliminary version of this paper. In [17], to achieve the
performance improvement via the feedback connection, some
passivity parameters for each subsystem is specialized to zero.
This paper derives more general conditions on the passivity
parameters to achieve the performance improvement.

The rest of the paper is organized as follows. In Section
II-A, we show an example to motivate the performance im-
provement analysis through the frequency control of power
systems with a large number of RE resources. In Section II-B,
a general problem setting in this paper is introduced. The
definition of performance-integrated passivity is provided in
Section II-C. The performance analyses of general feedback
and iterative feedback systems are presented in Section III.
In this section, a solution to the problem formulated in
Section II-B is provided. In other words, we find a model
set of subsystems such that the performance improvement is
achieved. Finally, the paper is concluded in Section IV.

Notation: R := [0,00). The symbols Ly and Lo, denote
the Lo-space and the extended Lo-space, respectively. For
¢ € Ly, the symbol ||¢||z, denotes the Lo-norm. For a causal
and Lo-stable system X, the symbol |31, denotes the Lo-
gain. The symbol {M};; denotes the (¢, j) entry of a matrix
M. For a real symmetric matrix X, the symbols A(X) and
A(X) denote the minimum and maximum eigenvalues of X,
respectively. The symbol V(X') denotes the eigenspace corre-
sponding to A(X). The symbol XT is said to be a generalized
inverse of X if it satisfies X XTX = X. Furthermore, the
matrix X is said to be irreducible if there does not exist
any permutation matrix U such that U XU is block upper
triangular. Two linear spaces X and ) are said to be disjoint
if ¥ NY = {0} holds. For a matrix M € R™*"™ and a causal
operator F : Lo, — Lo, their direct product is defined as

{M}ll]: {M}lnf
M@ F .= :

(M} F (Mo
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Fig. 2. A power network system is composed of some renewable energy
farms, which comprise a large number of RE resources, and a baseline power
system, which includes generators and loads.

II. PROBLEM SETTING: MODEL-SET-BASED
QUANTITATIVE ANALYSIS

A. Motivating Example

We consider a power network system that is constructed by
a baseline power system and some RE farms, as illustrated in
Fig. 2. The baseline power system is represented by the IEEJ
EAST 30-machine power model, which is the power system
in the eastern half of Japan [18] with 30 generators, 31 loads,
and 107 buses. The disturbance responses of the power system
are illustrated in Fig. 3. From the figure, the disturbance effect
is suppressed with the increase in the number of RE farms.
The key to realizing the performance improvement is the
passivity property, which is formally defined in Section II-C. It
should be noted that the baseline power system has a passivity
property; see Appendix A for details. In addition, the dynamics
of the controlled RE farms has also passivity property. The
improvement demonstrated in this example can be neither
shown nor explained by directly applying the previous works
[14]-[16] to this example. From this fact, we aim to find a
special class of the passivity describing subsystems such that
the performance improvement is achieved.

B. Model-set-based Performance Improvement Problem

We consider a feedback system Ypp (X1, X2) composed of
two subsystems:

Ei Y = Siui7 1 € {172}7 (1)

where S; : Lo, — Lo is a causal operator, and u; and y;
denote the input and output of 3J;, respectively. For example,
suppose that ¥; is a linear time-invariant (LTI) dynamical
system. Then, S; is given by the transfer function denoted
by S;(s) such that y;(s) = S;(s)u;(s) holds, where u;(s) and
yi(s) are the Laplace transforms of wu; and y;, respectively.
To construct the feedback system, X; and Yo are internally
connected via negative feedback. Let w € R™ and z € R™ be
the external input and control output of Ypp (X1, X2), respec-
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Fig. 3. Disturbance responses of the power system constructed by connecting
RE farms to the baseline power system in a step-by-step manner. (a) The
disturbance is injected into all RE farms of the power system. (b) The resulting
output, which is the average of all frequency deviations, is illustrated. The
output is increasingly suppressed with the increase in the number of the
connected RE farms.

tively. Then, the negative feedback connection is described as

up = w — Yo, 2)
up =y = 2. 3)

In this paper, we assume that Spg (31, 32) is well-posed, i.e.,
y1 and y2 of Xpp(X1,32) uniquely exist and belong to Lo,
for all w € L.

To formulate the problem of the performance improvement,
which is the main contribution of this paper, we define some
model sets and its performance measure. Let P;, 4 € {1,2} be
model set describing each subsystem ¥;,i € {1,2}, namely,
the set of 33; satisfying some specific property. Then, the model
set describing the feedback system Xpp is defined as

PFB(P1,P2) = {EFB(217Z2)|21‘ S 'PiJ c {172}}.

For example, let us consider ¥; and Y5 are single-input-single-
output (SISO) systems. As illustrated in Fig. 4a, each model
set P;,i € {1,2} describing X, is represented by the set
of all Nyquist plots of ¥; € P;. Then, the set of Nyquist
plots of g, which represents the model set Prg(P1, P2), is
illustrated in Fig. 4b. This paper addresses the quantitative
analysis, such as the Lo-gain evaluation, of the model set
describing Ypp. To this end, the Lo-gain of the model set
P; is defined as follows.

Definition 1: Suppose that all ¥; belonging to P; are Lo-
stable. Then,

v(Ps) = sup [|Z|L,
¥, €P;

is said to be the Lo-gain of P;.

We see that the Lo-gain of the model set P; is defined as
the worst-case system in P;. In this paper, we address the
following problem of performance improvement.

Problem I: Find P;,¢ € {1,2} such that
V(Prs(P1,P2)) < ¥(P1) )
holds.

Fig. 4. Example of model set for SISO systems: (a) Nyquist plots of X; €
Pi, i € {1,2}. (b) Nyquist plots of Xpp € Pgp, which are generated from
i € Pi,i € {1,2} in subfigure a.

Problem 1 can be called model-set-based analysis of the
feedback system Yrp. Each subsystem ¥;,7 € {1,2} and Xgp
are described by model sets P; and Prp, respectively, rather
than precise models such as a state-space model and a transfer
function. In the model-set-based analysis, only the model set
describing 33, is utilized for the analysis of Ypp, while the
precise model of X; is not utilized at all. In particular, the
aim of this paper is to find P; to achieve the performance
improvement (4), i.e., the Ly-gain of Prg(P1, P2) decreases
as compared to that of P;.

C. Definition of Dissipativity and Passivity

One of the key tools to describe input-output systems is
dissipativity, in particular, (@, S, R)—dissipativity [19], [20],
which is defined as follows.

Definition 2: Let Q = QT € R™*™ S € R™*™ and R =
RT € R™*™_ Then, the system Y; is said to be (Q, S, R)-
dissipative if there exists p; € R such that for any u; € Lo,
and its corresponding output y;,

[ {ursue - prau)

—luT (1) Ruy; (’7’)} dr > p; 5)

holds for all T' € Ry.

The (@, S, R)-dissipativity characterizes the set of dynamical
systems by three parameters (), S, and R. The parameters
have been utilized for the gqualitative stability analysis of
large-scale systems [3]-[6], [21]. The aim of this paper is
to find a special class of (@, S, R)-dissipative subsystems to
achieve the performance improvement. Even if the Ly-gain of
the (@, S, R)-dissipativity is characterized by the parameters
@, S, and R, we cannot show the performance improvement
(4) for the general parameters. In this paper, we restrict the
parameters in the (@, S, R)-dissipativity to solve Problem 1
and focus on the passivity [20], [22].

Definition 3: The system %; is said to be (Q, R)-passive if
it is (Q, S, R)-dissipative with respect to @ > 0,5 = I,,,, and
R > 0. In addition, the set of all (@), R)-passive systems is
denoted by P(Q, R).



IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. X, NO. X, ... 20XX

In the definition, we remark that Q—! > R necessarily holds
if the model-set P(Q, R) is not empty. The matrix parameters
@ and R characterize the model set P(Q, R) and express the
passivity level of a dynamical system. In the following discus-
sion, we confine our attention of the model set P; in Problem
1to ,P(Q“Rz), ie., P; = P(Q“Rl),l S {1,2} holds. This
means that the (@, R)-passivity property is imposed on ;.

III. PERFORMANCE ANALYSIS AND IMPROVEMENT OF
PASSIVE SYSTEMS

In this section, a solution to Problem 1 is provided.
We first provide the performance evaluation of Ls-gain of
P(Q1, R1) and Prp(P1,P2), respectively. On the basis of
the performance evaluation, a model set describing subsys-
tems X;,¢ € {1,2} for the performance improvement of
the feedback system is derived. In other words, we find Q;
and R;,i € {1,2} such that (4) holds. Subsequently, the
performance improvement of the feedback system is extended
to that of an iterative feedback system, which is defined in
Subsection III-B.

A. Performance Analysis and Improvement of Feedback Sys-
tems

We introduce a performance index to evaluate the Lo-gain
of the model set P(Q, R) as

(@)= W(%)&()Q R ©)

Then, the performance evaluation of the Lo-gains of
P(Q1, R1) and Ppp is provided in the following lemmas.

Lemma 1: Suppose that ¢); > 0 holds. Then, the Ls-gain
of P(Q1, R1) satisfies

v(P1) = e(Q1, R), (7)
where £(Q1, Ry) is given by (6)

Lemma 2: Suppose that P; = P(Q;, R;),i € {1,2} holds.
Then, letting Qrp > 0 and Rpp > 0 be given by

Qrp = Q1 + Ry, ®)
Rrp = R1(Q2 + R1)'Qo, )

it holds that PFB(P17P2) C P(QFB,RFB). In addition, if
Qrp > 0 holds, the Lo-gain of Prp(Py, P2) satisfies

v(PrB) < £(QrB, RrB),
where (-, -) is given by (6).

(10)

The proofs of Lemmas 1 and 2 are given in Appendix B and
C, respectively. Lemma 1 provides the performance evaluation
of the Lo-gain of P(Q1,Ry). In particular, v(P(Q1,R1))
is tightly evaluated by (6), which is determined only by
the passivity parameters (J; and R;. This implies that the
evaluation does not require the detailed models of ;. In
Lemma 2, an outer-approximation of Pgg(P;,Ps) is given by
P(Qrp, Rrp), which is explicitly characterized by the param-
eter transition in (8) and (9). Suppose that Xpp is described by
a SISO system. Then, P(Qrg, Rrg) is represented by the disk

Im

: P(Qrp, RrB)

Re

e(Qrs, RrB)

Fig. 5. Outer-approximation of Prp by P(Qrp, RrFp ), which is represented
by the disk region in the closed right-half plane of the complex plane. The
performance index £(Qpp, Rpp) is graphically obtained and is depicted by
the white circle.

region that includes the model set Ppg (P71, P2), as illustrated
in Fig. 5. With the transition, we evaluate the Ly-gain of Ppp
in the sense of the upper bound e(Qrp, Rrp). On the basis
of Lemmas 1 and 2, a solution to Problem 1 is provided in
the following theorem.

Theorem 1: Suppose that ()1 > 0 holds in addition to the
condition of Lemma 2. Then, the following two statements
hold:

i) Suppose that Q3 = ¢2I,, > 0, Ry = r1,, > 0, and

q2A(R2) > A(Q1)r1 hold. Then, (4) holds.
ii) Suppose that either Q2 = 0 or R; = 0 holds. Then,
V(®1) and Ker Ry are disjoint if and only if (4) holds.

Proof: 1) Suppose that Ry = r1I,, > 0 and Q2 =
g21,, > 0 hold. From Lemma 2, Prg C P(Qrg, Rrp) holds,
where Qpp and Rpp are given in (8) and (9). In addition,
from Lemma 1, £(Q1, R1) and ¢(Qrp, Rrp) are given by

1 1-X
g(Ql, Rl) = )\(Ql)(Ql)Tl )
q271
B 1+ \/1 _A(Ql +R2)q2+7”1
£(Qrs, Rrp) = MQ1 + Ra)

Note that A(Q1 + R2) > A(Q1) + A(R2) and suppose that
@2A(R2) > A(Q1)r1 holds. Then, we show that

qa271
A + R. - A
,(Ql 2)q2 T f(Ql)ﬁ
q271

= (A(Q1 + Rg) — A(@1)) —

Q2+ 71 Q2+ 11—
T1

A(R2) — A >0
P (@2A(R2) — A(Q1)r1) =
holds. Noting that ¢2/(g2 + r1) < 1 holds in (11), we have
AQ1 + Ra) > A(Q1). (12)
From (11) and (12), we show that

e(QrB, Rr) < €(Q1, R1)

holds. It follows that (4) holds.

i) Suppose that either ) = 0 or R; = 0 holds. Then,
e(Q1, Ry) and ¢(Qpp, Rpp) are given by

£(Q1, R1) = e(QrB, RrB) = m

2
1

A(@1)

>

Y

13)

2
AQ1)’
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From Lemma 3 given in Appendix D, V(Q1) and Ker Ry are
disjoint if and only if (12) holds. This is equivalent to (13).
It follows that (4). This completes the proof of Theorem 1.
]

Theorem 1, which gives a solution to Problem 1, provides
a model set describing subsystems such that the performance
improvement is achieved. This is one of the main contribution
of this paper.

Remark 1: Suppose that 3; in (1) is Lo-stable. In addition,
assume that the initial state of X; is zero. Then, for any
u; € Lo and its corresponding output y;, the inequality (5)
holds even if T" — oo and p; = 0. Applying Parseval’s theorem
to the inequality (5), as T" — oo, we obtain the following ex-
pression. The system 33; is said to be the frequency-dependent
(Q, R)-passive if, for any u; € Lo and its corresponding
output y;, it holds that

Ia {uT (0)i:2) — 257 (1)Q ()i ()

s 2
—1ﬁT(jw)R(w)ﬁi(jw)} dw >0, (14)

where ; and ¢; denote the Fourier transforms of w; and y;,
respectively, and Q(w) and R(w) are bounded and positive
semidefinite matrix-valued frequency functions. When Q(w)
and R(w) are independent of w, i.e., Q(w) = Q and R(w) =
R, (14) is reduced to (5). Let P,,(Q(w), R(w)) be the set of dy-
namical systems that satisfy (14) for some Q)(w) and R(w). We
see that P, (Q(w), R(w)) is a more general set than P(Q, R).
By introducing the frequency-dependent passivity, we address
the problem of the performance improvement in the sense
of the frequency-dependent gain of the model set. Assuming
that 3; is LTI and recalling its transfer function representation
Si(s), we define the gain of P; = P, (Q;(w), R;(w)) as

Y(Pisw) := sup a(Si(jw)).

i i

Suppose that P; = P, (Q1(w), R1(w)) and Q1(w) > 0 for all
w € R. Then, we show that the gains of P; and Ppp satisfies
:)/(7)1760) = 6(@1(W),R1(W)), Yw € Ra
¥(Prp,w) < e(QrB(w), Rr(w)), VYw R,

where Qrp(w) and Rpp(w) are given by (8) and (9), and
e(+,+) is given by (6). In a similar manner to the analysis
in Theorem 1, we can find Q;(w) and R;(w) to achieve
the performance improvement for all frequency points, i.e.,
it follows that

Y¥(Prp,w) < 5(P1,w)
for all w € R. Furthermore, letting @Q;(w) and R;(w) be
Qi7 we

Qi(w) = {

0, otherwise,

R(UJ) . R;, wen
’ "~ 10, otherwise,

we restrict the infinite integration interval in (14) to a finite
frequency range (2. Then, we can find @Q); and R; to achieve
the performance improvement in the range €2 of the feedback
system that is composed of even non-passive subsystems.

B. Performance Analysis and Improvement of Iterative Feed-
back Systems

We extend the model-set-based performance analysis in
Theorem 1 to that of the iterative feedback system, which is
a network system constructed by the feedback connection of
multiple subsystems in a step-by-step manner. In the iterative
feedback system, we assume that each connected subsystem is
implemented in a decentralized manner as illustrated in Fig. 1.
The aim of this subsection is to find a model set describing
connected subsystems to achieve a gradual improvement of
the performance of the iterative feedback system with the
implementation progress. For simplicity of analysis, we con-
sider the case where one subsystem is connected to a baseline
system 4. Then, we provide a port selection of the subsystem
connection for the performance improvement such that the Lo-
gain of the model set describing the overall control system is
strictly less than that describing the connected subsystem.

Let us consider a baseline system X, described by

Yoy = Sou, (15)

where Sp : Lo, — Lo is a causal operator, and v € R™ and
y € R™ denote the input and output of X, respectively. For
Yo in (15), let y be partitioned as y =: [y] y; --- y,,]"
where the subscript ¢ of y, € R represents the port number.
The subsystem ¥, is connected to the ¢-th port of ¥. Then,
Yy is described as

[l

Xg i ve = Seye, (16)

where Sy : Lo, — Lo, is a causal operator and v, € R denotes
the output of >,. We define an operator JF; as

Fo=E®S;, (17)

where E; = ege] € R™*™. The symbol e, denotes the unit
vector in which the /-th entry is one, while the others are
zero. Using the input-output operator of (17), we rewrite each
subsystem X, to an another subsystem II,, which is described
as

Hg :v:}'gy, (18)
where v = [v{ vy --- v, ]T. From (17) and (18), we see

that X, has a decentralized structure, which is the result of
expressing the implementation of subsystem >, in a decen-
tralized manner as that in a centralized manner. The feedback
connection of I, to ¥, is described by

U=w—v,

z=uy.

19)
(20)

We construct the entire control system with the input w and
output z by connecting I, to ¥ via the negative feedback of
(19) and (20). The entire system is denoted by Yens (2o, X¢).
Let Py and P, be the model sets describing 3y and 3,
respectively. Then, the model set describing Ye,t (20, X¢) is
described as

Pent,e := Pre(Po, Pe).

We consider the case where X is passive and strictly proper.
Then, Py = P(Q,0) holds for some @ > 0. The following



IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. X, NO. X, ... 20XX

theorem shows the performance improvement of Yo (3, X¢).

Theorem 2: Suppose that Py = P(Q,0) and P, =
P(qeEe, r¢E¢) hold for some ¢, > 0 and r, > 0. Then, for
Qent,¢ > 0 given by

ant,f = Q + T'ZEEa

it holds that Pepni.¢ € P(Qent,e; 0). Furthermore, suppose that
@ > 0 and 7, > 0 hold. Then,

V(Pent.e) <7(Po)
holds if and only if the ¢-th entry of any v € V(Q) is nonzero.

21

(22)

Proof: From Lemma 2, we see that Pent ¢ € P(Qent,¢, 0)
holds. Next, we show that (22) holds if and only if the /-th
entry of any v € V(@) is nonzero.

(Necessary condition for (22)) Suppose that Q > 0, r, > 0,
and (22) hold, and equivalently

AQent,e) > AMQ) (23)

holds. From Lemma 3, it follows that V(Q) and Ker F; are
disjoint and equivalently for any v € V(Q), v ¢ Ker E; \ {0}
holds. Because Ker Ey = span{ei,...,e€—1,€p41,---,€m}
holds, we show that the ¢-th entry of any v € V(Q) is nonzero.

(Sufficient condition for (22)) Suppose that the ¢-th entry
of any v € V(Q) is nonzero. Then, v ¢ Ker E, \ {0} holds.
This implies that V(@) and Ker F; are disjoint. From Lemma
3, we show that A(Qent,¢) > A(Q). It follows that (22) holds.
|

As shown in Theorem 2, Pen, inherits the passivity
property from Py independently of the port selection of the
subsystem connection. In addition, an outer-approximation
Of Pent,¢ is given by P(Qent ¢,0), which is explicitly char-
acterized by the parameter transition in (21). Furthermore,
Theorem 2 provides a condition of port selection for the
performance improvement such that the Ljy-gain of Py e
decreases compared to that of P(Q,0). In Theorems 1 and
2, we provide a condition of the passivity parameters for
the performance improvement. Theorem 1 addresses the feed-
back system composed of general subsystems and provides
a general condition for the improvement. Theorem 2 is a
specialization of Theorem 1 by addressing the decentralized
structure in the connected subsystems.

Theorem 2 is applicable to the performance improvement
of the iterative feedback system. Note that the performance
improvement by Theorem 2 is shown under the requirement
for the connection port of the subsystem 3, (equivalently
subsystem 1I, with the decentralized structure). This implies
that the condition for the performance improvement is checked
at every connection step. By restricting the class of (), we show
the performance improvement under a requirement only on ¥
independently of the port selection.

Proposition 1: Suppose that Py = P(Q,0) and P, =
P(qeEe,7¢Ey) hold for Q@ € M, ¢o > 0, and r, > 0,
where M denotes the set of M-matrices [23]. Then, for any /,
Qent,e € M and Pept e € P(Qent, ¢, 0) hold. In addition, for
any ¢, (22) holds if and only if @ is irreducible.

The proof of Proposition 1 is given in Appendix E.

Proposition 1 provides a model set describing > for the
gradual performance improvement. From Proposition 1, the
passivity parameter QQent, ¢ is the M-matrix independent of the
port selection of the subsystem connection. In addition, the
irreducibility of Qent ¢ achieves the performance improvement
for any port selection. From these facts, as long as the passivity
parameter of X is the irreducible M-matrix, the performance
improvement is achieved whenever any ISP subsystem is
connected to any port of the baseline system at any step. In
this sense, Proposition 1 provides a class of @ for a gradual
improvement of the Lo-gain of P(Qent ¢, 0).

As stated in Remark 1, the analysis in this section can also
be extended to a more general analysis where the passivity
parameters are dependent on the frequency.

Remark 2: Proposition 1 requires a severe condition to be
imposed on Xy to show the improvement mathematically. The
condition that ) is an M-matrix is technical. In most cases,
v € V(Q) can have no zero entries even though () is not an M-
matrix. Actually, the irreducibility of () plays an important role
in the gradual improvement of the Ly-gain of P(Qent,¢,0).

IV. CONCLUSION

This paper addressed the model-set-based quantitative anal-
ysis of the feedback system. In particular, we found the passiv-
ity parameters in the model sets that describes subsystems such
that the performance improvement is achieved; the Ly-gain of
the model set that describes the feedback system decreases
as compared to that describes the disconnected subsystem.
A solution to the problem was provided by Theorem 1.
Furthermore, the model-set-based performance analysis and
improvement of the feedback system were extended to those
of an iterative feedback system with a decentralized structure.
Then, a condition on the passivity parameter for gradual
improvement of the Lo-gain of the model set was derived.
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APPENDIX
A. Power System Model and Simulation Setup

In the IEEJ EAST 30-machine model, each generator model
consists of a simplified synchronous machine described as
a second-order dynamics and a first-order turbine-governor
dynamics [24]. We suppose that there are no isolated buses in
the baseline power system, i.e., the topology of the network
in the baseline power system is described by the strongly
connected graph [25]. The interconnection between some
connected buses can be represented as the power flow equation
[24] with an assumption of a lossless network. We consider
the linearized baseline power system around an equilibrium
point. The input and output of the linearized power system are
the output of RE farms and the weighted sum of frequency
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deviation in all synchronous generators, respectively. Then, the
weighting factor is determined such that the baseline system is
passive, which can be evaluated by, e.g. the KYP lemma [26].
The output of RE farms is generated by the PI controller,
where the proportional and integral gains are selected from
values in the range of [1 4]. In addition, the disturbance is
additively injected into the output of the RE farms. The entire
power system is represented by the feedback system composed
of the baseline power system and the RE farms.

B. Proof of Lemma 1

Let S; =0 and g; := y;
(5) that for any u; € Lo,

— Ql_lul. Then, it follows from

T T
/ ﬂﬁ%&mhmfgf u) (T)(Q7Y — Ry)uy (7)dr — py.
0 0

holds. Because u] (Q;' — Ri)u; < MQ7' — R)uj u; and
MQ1)J 1 < 7] Q171 hold, we have that

T
A@Q) / 5T (1) (r)dr

T
M@ - R [l (- g
0

holds for all 7' € R,.. It follows that
VAQUNQ! — Ry) |
~3xAP
Q) A@)"™
for all u; € Lo, and T' € [0, 00), where || - ||,z denotes the

finite time Lo-norm: for £ € Ly and T' € R4,

T
€l = ( / ||£(T)||2d7>

Recalling that y; = y; + Ql_lul, we have

91l z,.7 < luillL,m

2

- 1
Y1 Lo, T S W1llLo, 7 + o= UL Lo, T
ly1lle. 911l A(Q1)” [

1
e(Qr, Ri)llurllp,.r — @PL

Because ||u1||r, 7 < ||u1]/L, holds for any u; € Lo, it follows
that

1
< R - —p1. 24
lyillz,,r < e(Q1, Ry)|lui| L, A(Qﬁpl (24)

We see that (24) holds as T — oo. Then, 31 € P(Q1, R1)
with @1 > 0 is La-stable, and (24) is reduced to

H21||L2 < E(Qh Rl)

with £(Q1, R1) of (6).

Finally, to show (7), we aim to find an example of the
“worst” X7 in P(Q1,R;) such that (25) holds with the
equality. To this end, let us consider ¥; described by the
transfer function representation:

2\ /AMQOAQ — Ry)
y1<s>—< 2 !

(25)

AQ1) Ts+1

1 AQUAQ; !~ Ry)
* AQ1) )m(s)’

where Q1 > 0 and Ry > 0 with Ql_l > R;. Then, we see that
31 € P(Q1, Ry) holds. In addition, the performance criterion
of P(Q1, Ry) is given by (6), which is equivalent to the actual
Lo-gain ||X4]|,. It follows that (7) holds. |

C. Proof of Lemma 2

From the definition of passivity, we see that there exists
prB € R such that the inequality

2
> [ el () = o ()Quan(r) = o] () R
I,

S 9]l B ra e e

holds for all T € R,. Utilizing (2) and (3), we have

> o) [ ][]

{<i75472%i5%m%ﬂ
[ ] o el )
T) —R; I Ry w(T)
B I O S | +(r)
y2(7) Ry 0 —Q2 — Ri] |ya(7) 06
We see that Q> + Ry > 0 and
Ri(Q2+ R)'(Q2 + R1) = Ry 27)

hold because Ker (Q2+R;) C Ker Ry holds. These conditions
enable us to apply completing the square with respect to yo
to the right hand side of (26). Then, (26) is bounded by

o] i e P
<[] [ o ) [10)
(0] [8] @ [3] [0

Substituting (27) into —R; + Ry (Q2 + Ry)T Ry, we have that
Iy

" Tw()] ' [- w(r)
dr > 28
[ LR T Gl 50 arz e e
holds for all 7' € R, where Qrp and Rpp are given by (8)
and (9), i.e., Xrp (X1, X2) € P(Qrp, Rrp) holds. In addition,
applying (25) to 3pp(X1,%2) € P(Qrp, Rrp), we show

that Prg C P(Qrp, Rrp) holds. This completes the proof
of Lemma 2.

Rrp
I,
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D. Supplementary Lemma for Proof of Theorem I

Lemma 3: Consider Y > 0 and Z > 0. Then, the following
two statements are equivalent:

i) V(Y) and Ker Z are disjoint.
i) MY +2) > AY).

Proof of Lemma 3: (i = ii) Any vector ¢ € V(Y + Z) is
decomposed as ¢ = g1 +q2, where ¢; € Im Z and g5 € Ker Z.
Then, we have

MY +2)=q" (Y +2Z)q

=(q+q) Y(a+ae) +a Za. (29)

First, suppose that ¢; # 0. Noting (g1 + ¢2) 'Y (q1 + q2) >
AY) and ¢ Zg1 > 0 hold, we have that A(Y + Z) > A(Y)
holds. Next, suppose that g = 0, or in other words, ¢ €
Ker Z. Then, the right-hand side of (29) is reduced to qu Yqo.
From the statement i), we see that g2 ¢ V(Y) \ {0} holds,
which implies ¢) Yg2 > A(Y). Therefore, this shows that
AY +2) > AY).

(i = 1) We suppose that V(Y') and Ker Z are not disjoint to
derive a contradiction. In other words, there exists v € V(Y)
such that v € Ker Z\ {0}. Then, A\(Y +2) < v (Y +2Z)v =
A(Y). This contradicts the statement ii). |

E. Proof of Proposition 1

From the parameter transition (21), we see that, for any /,
all off-diagonal entries of Qent,¢ do not change from those
of @. This implies that, for any ¢, Qent,e € M and Pent,e C
P(Qent,¢, 0) hold.

Next, we show that, for any ¢, (22) holds if and only if @
is irreducible.

(Necessary condition for (22)) Suppose that @ > 0, v, > 0,
and (22) hold, and equivalently (23) holds. From Lemma 3,
it follows that V(@) and Ker E, are disjoint. Suppose that
Q@ is reducible to derive a contradiction. Then, at some k,
{Q@}k; = 0 holds for all j # k. Then, v € V(@) has at least
one zero entry. This contradicts that, for any ¢, (22) holds.

(Sufficient condition for (22)) Suppose that ) is an irre-
ducible M-matrix. Then, letting § be the maximum value of
the diagonal element of @), we can decompose () as

Q=0ln—E, (30)

where = € R™*™ is an irreducible non-negative matrix.
From the Perron-Frobenius theorem [23], all entries of the
eigenvector corresponding to A(Z) are positive. Thus, from
(30), all entries of v € V(Q) \ {0} are positive. Then, for

any ¢, v ¢ Ker Fy holds. From Lemma 3, it follows that (23)
holds. Therefore, it follows that for any ¢, (22) holds. |
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