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Abstract— Large-scale penetration of photovoltaic (PV)
power generators and storage batteries is expected into the
power system in Japan. To maintain the supply-demand balance
with energy storage, the optimal power generation and the
charge/discharge power of storage batteries can be determined
in a manner of the model predictive control of generators.
In view of this, this paper addresses a problem of the day-
ahead scheduling for the supply-demand-storage balance with
explicit consideration of the model predictive power generation.
This scheduling is performed by using demand prediction,
whose uncertainty is expressed in terms of interval prediction.
Formulating the day-ahead scheduling problem as an interval-
valued allocation problem, we give a solution to it by taking
an approach based on the monotonicity analysis with respect
to the optimal solution. Finally, the efficiency of the proposed
method is verified through a numerical simulation, where we
use an interval prediction of PV power generation constructed
by experimental data.

I. INTRODUCTION

Recently, renewable energy gathers attention to address
the issues on the global warming and the depletion of
natural resources. The Japanese government has provided a
road map, called PV2030+ [1], towards the penetration of
renewable energy sources as typified by photovoltaic (PV)
power generation, and thus large-scale penetration of storage
batteries and PV generators is expected in near future.

In the following, we use the term “demand” to represent
the amount of power obtained by subtracting the amount of
PV power generation from the amount of power consump-
tion by consumers. At the phase of power system online
operation, by online monitoring the amount of demand,
we determine the amounts of power generation and battery
charge/discharge power by solving an allocation problem to
optimize economical efficiency. However, because the power
generators cannot start up instantaneously, it is necessary
to make a offline day-ahead schedule to decide how many
power generators should start up at each moment on the
day of interest. If a profile of demand prediction is obtained
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Fig. 1. Allocation Problem with Interval Demand Prediction.

as shown in Fig. 1(a), such a scheduling problem can be
addressed as a day-ahead allocation problem, in which the
profile of demand prediction is divided into those of power
generation and battery charge/discharge power as shown in
Fig. 1(b).

It should be noted that the demand prediction inevitably
includes some uncertainty in practice since PV power gener-
ation depends on weather. Thus, it is necessary to make the
day-ahead schedules while taking it into consideration. There
are several methods of renewable energy prediction in which
uncertainty is expressed as confidence intervals [2], including
prediction profiles with a certain probability (e.g., 95%).
In particular, we use a confidence interval for PV power
generation prediction produced by the method proposed in
[3]. In this method, a prediction model based on support
vector regression produces an interval with a predetermined
confidence level from meteorological data [4].

The profiles of demand prediction are supposed to vary
within the sequence of intervals as shown in Fig. 1(c). In
compliance with this, the offline day-ahead schedules of
power generation and battery charge/discharge power are to
be obtained as the sequences of intervals, whose determi-
nation can be formulated as an interval-valued allocation
problem. This interval-valued allocation problem aims at
finding the upper and lower limits of the optimal power
generation and charge/discharge power shown by the lines
with circles in Fig. 1(d).

However, the interval-valued optimization problem is not
necessarily easy to solve, because it cannot be solved by
finding the optimal value for a finite number of grid points in



the parameter space. To tackle this difficulty of the problem,
a constraint propagation technique can be used in conjunc-
tion with branch-and-branch algorithms [5], [6]. However,
this requires the direct computation, thereby incurring large
computation loads. Moreover, a conservative solution may
be derived.

We have proposed a fundamental method based on the
monotonicity analysis for the optimal solution in [7] as a
first step. This paper continues upon the research of [7] and
provides its generalized version in the sense that we formu-
late the interval-valued allocation problem on the basis of
model predictive control of power generators, which allows
us to ensure a kind of feasibility in the online operation.
Online operation values of generators and storage batteries
are not determined in intervals of them in [7]. In this paper,
online operation values of generators and storage batteries
are determined in a manner of model predictive control.
In this generalized optimal problem, we need to consider
the monotonicity of the optimal solution with respect to not
only the variables for demand but also that for battery stored
energy. In addition, we develop theoretical extensions that
enable us to take account of constraints on storage batteries
such as a battery capacity.

Finally, we clarify our contribution in comparison with
existing studies on robust model predictive control consid-
ering some uncertainty. In a standard problem of robust
model predictive control, where the uncertainty is modeled
as an interval-valued or stochastic parameter, one optimal
trajectory of the decision variable, such as an input signal,
is determined so as to minimize an objective function that
evaluates, e.g., its worst case or expectation value; see [8],
[9], [10], [11], [12], [13] and references therein. In contrast,
our interval-valued optimization problem aims at finding an
interval set containing an infinite number of the optimal
trajectories of the decision variable, each of which corre-
sponds to each trajectory of an interval-valued parameter.
The solution of this novel type of problems clarifies the
lower and upper limits of input signals required to achieve the
optimal control for each trajectory of an uncertain parameter,
which has good compatibility with power system operation
based on the online monitoring of demand. As for the
other approaches, [14], [15], [16], [17] discuss day-ahead
scheduling problems with the prediction uncertainty of re-
newable energy in manners of fuzzy optimization, stochastic
optimization, and dynamic programming However, they do
not consider utilizing the online operation of power systems.

The following notation is used in this paper. We denote
the set of real numbers by R, the n-dimensional unit matrix
by In, the n-dimensional all-ones vector by 1n, the n-
dimensional all-zeros vector by 0n, the cardinality of a
set I by |I|, the power set of a set I by P(I), and the
rank of a matrix A by rank(A). For natural number n, let
N[n] := {1, 2, . . . , n}. We denote a matrix composed of
column vectors of In corresponding to the indices I ⊆ N[n]
by enI ∈ R

n×|I|. In particular, if not confusing, we omit its
superscript n.
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Fig. 2. Operation Problem at time k.

II. PROBLEM FORMULATION

A. Online Operation Based on Model Predictive Control

In this section, we formulate an “offline” day-ahead al-
location problem considering the model predictive control
of power generators in power system operation. Dividing
a day into n moments whose sampling period is ΔT :=
24/n [hour], we determine appropriate power generation
and battery charge/discharge cycles. In this subsection, we
consider an “online” operation problem at time k ∈ N[n].

In this online operation problem, taking advantage of
the online monitoring (updating) of demand, we consider
determining the amount of power generation in a manner of
model predictive control. In the power system operation at
time k, suppose that we can use the information of

d|k :=

⎡
⎢⎢⎢⎢⎢⎣

dk
d̂k+1

d̂k+2

...
d̂n

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

m, m := n− k + 1 (1)

and

xk−1 ∈ R (2)

where dk denotes the amount of demand observed at time k,
the sequence of d̂i for i ∈ N[n]\N[k] denotes the profile of
nominal demand prediction, and xk−1 denotes the amount of
battery stored energy at time k− 1. An illustration of d|k is
given in Fig. 2 (a). In this notation, we describe the decision
variables as

v|k := {vi|k} ∈ R
m, Δx|k := {Δxi|k} ∈ R

m,

x|k := {xi|k} ∈ R
m

where vi|k, Δxi|k, and xi|k denote the amounts of power gen-
eration, battery charge/discharge power, and battery stored
energy at time k + i − 1, respectively. Illustrations of v|k,
Δx|k, and x|k are given in Figs. 2 (b), (c) and (d).

Next, we impose a set of constraint conditions on the
decision variables. The inequality constraint for the upper
and lower limits of charge/discharge power is given as

Δxmin1m ≤ Δx|k ≤ Δxmax1m (3)



where the constants Δxmin ∈ R and Δxmax ∈ R denote the
lower and upper limits of charge/discharge power, respec-
tively, which represent the inverter capacity. The inequality
constraint for the upper and lower limits of battery stored
energy is given as

xmin1m ≤ x|k ≤ xmax1m (4)

where the constants xmin ∈ R and xmax ∈ R denote the
lower and upper limits of battery stored energy, respectively,
which represent the battery capacity. The equality condition
of xm|k, i.e., the battery stored energy at termination time
n, is given as

xm|k = xd (5)

where the constant xd ∈ R denotes the desired value at n.
Furthermore, the equality condition representing the supply-
demand balance is given as

Δx|k = v|k − d|k. (6)

Note that the temporal sequences of battery stored energy
x|k can be represented by

x|k = xk−11m +ΔTMmΔx|k (7)

where xk−1 denotes the battery stored energy at time k −
1, Δx|k denotes the temporal sequence of charge/discharge
power. Mm ∈ R

m×m denotes the lower triangular matrix,
whose (i, j)-element is given by

Mm(i,j) :=

{
1 if i ≥ j

0 otherwise

Finally, the objective function is defined as

Jk(v|k) := ΔT

m∑
i=1

(
a0 + a1vi|k + a2v

2
i|k

)
(8)

where Jk(v|k) represents the fuel cost function of power
generators, and the constants a0 ∈ R, a1 ∈ R, and a2 ∈ R are
appropriate positive values. Multiplying the objective func-
tion by 1/(2a2ΔT ), Jk(v|k) can be equivalently rewritten
as

Jk(v|k) :=
1

2
v�|kQ|kv|k − p�|kv|k, (9)

where Q|k and p|k are given as

Q|k := Im and p|k := − a1
2a2

1m.

In this function, the constant term is omitted because it does
not affect its minimizer.

Let us consider eliminating the redundant decision variable
by using (6) and (7). Then, the operation problem at time k
can be formulated as follows. First, we solve the quadratic
programing problem

v∗|k := argmin
v|k∈Rm

Jk(v|k), s.t.

{
Ain|kv|k ≤ bin|k
Aeq|kv|k = beq|k

(10)

where v∗|k denotes the optimal values of v|k, Jk(v|k) is
defined as in (9), and Ain|k, bin|k, Aeq|k and beq|k are defined
as

Ain|k :=

⎡
⎢⎢⎣

Im
−Im
Mm

−Mm

⎤
⎥⎥⎦ , (11)

bin|k :=

⎡
⎢⎢⎣

Δxmax1m + d|k
−(Δxmin1m + d|k)

1
ΔT (xmax − xk−1)1m +Mmd|k

−{ 1
ΔT (xmin − xk−1)1m +Mmd|k}

⎤
⎥⎥⎦ , (12)

Aeq|k := 1�
m, (13)

beq|k :=
1

ΔT
(xd − xk−1) + 1�

md|k. (14)

Next, by using v∗|k, the optimal values of Δx|k and x|k are
calculated as

Δx∗
|k := v∗|k − d|k, (15)

x∗
|k := xk−11m +ΔTMmΔx∗

|k. (16)

Finally, we determine the amounts of power generation,
battery charge/discharge power, and battery stored energy at
time k as v∗1|k, Δx∗

1|k and x∗
|1k, respectively.

B. Offline Day-Ahead Scheduling Problem Based on Interval
Demand Prediction

In this subsection, on the basis of online operation in a
manner of model predictive control in (10), we formulate an
offline day-ahead scheduling problem for power generation
and battery charge/discharge power. In this problem, dk in (1)
and xk−1 in (2) are dealt with as interval-valued parameters.
We suppose that the nominal demand profile d̂i, the interval
prediction [dk, dk] ⊂ R at each k ∈ N[n], and the initial
battery stored energy x0 ∈ R are given in advance. Then, let
us consider the following day-ahead scheduling problem:

Problem 1: Consider the quadratic programming problem
(10). Given [dk, dk] ⊂ R for each k ∈ N[n] and x0 ∈ R,
define

V∗
|k :=

{
v∗|k(dk, xk−1) | (dk, xk−1) ∈ {[dk, dk]× [xk−1, xk−1]}

}

ΔX ∗
|k :=

{
Δx∗

|k(dk, xk−1) | (dk, xk−1) ∈ {[dk, dk]× [xk−1, xk−1]}
}

X ∗
|k :=

{
x∗
|k(dk, xk−1) | (dk, xk−1) ∈ {[dk, dk]× [xk−1, xk−1]}

}

where xk−1 and xk−1 are defined as

xk−1 :=

{
x0 if k = 1

x∗
k−1 otherwise

, xk−1 :=

{
x0 if k = 1

x∗
k−1 otherwise.

Then, find

v∗1|k, v∗1|k, Δx
∗
1|k, Δx∗

1|k, x∗
1|k, x∗

1|k

where v∗1|k and v∗1|k denote the maximum and minimum
values of the first elements of v∗|k for any v∗|k ∈ V∗

|k, i.e.
the upper and lower bounds of the first elements of set V∗

|k,
and Δx

∗
1|k,Δx∗

1|k, x
∗
1|k, and x∗

1|kare defined as in the same
manner. �



Note that the lower and upper limits of the optimal power
generation, i.e., v∗1|k(dk, xk−1) and v∗1|k(dk, xk−1), can be
used to determine how many generators should start up in
advance.

III. SOLUTION OF SCHEDULING PROBLEM BASED ON
MONOTONICITY

A. Monotonicity of Solution of Quadratic Programming
Problem

We first introduce the following notion of monotonicity:

Definition 1: Let D := [d, d] ⊂ R
ν . A function f : D →

R
N is said to be σ-monotone with respect to d, if, for any

d(1), d(2) ∈ D such that d(1)j > d
(2)
j and d

(1)
\j = d

(2)
\j , there

exists a constant matrix σ ∈ {−1, 1}N×ν such that

σi,j

(
fi(d

(1))− fi(d
(2))

)
≥ 0, ∀i ∈ N[N ], j ∈ N[ν]

where dj denotes the jth element of d, d\j denotes the
subvector of d constructed by eliminating its jth element,
σi,j denotes the (i, j)-element of σ, and fi denotes the ith
element of f . �

We consider the maximum and minimum values of ith
element of the function f : D → R

N for D := [d, d] ⊂
R

ν . If the function f is σ-monotone with respect to d, the
maximum and minimum values of the ith element of f can
be represented as

fi(d) := max{fi(d) | d ∈ D} = fi(d
(i)
)

fi(d) := min{fi(d) | d ∈ D} = fi(d
(i))

where the jth element of d
(i)

and d(i) are defined as

d
(i)

j := σi,j max{σi,jdj , σi,jdj}
d
(i)
j := σi,j min{σi,jdj , σi,jdj}.

Next, we consider the parametrized quadratic program-
ming problem given by

v∗(d) := argmin
v∈RN

J(v) s.t.

{
Ainv ≤ bin(d)

Aeqv = beq(d)
(17)

where

Ain ∈ R
M×N , Aeq ∈ R

R×N , bin(d) ∈ R
M , beq(d) ∈ R

R

and

J(v) :=
1

2
v�Qv − p�v

with a positive definite matrix Q = Q� ∈ R
N×N and a

vector p ∈ R
N . If bin(d) and beq(d) are continuous functions

of d, then v∗(d) is a continuous function of d.
It is difficult to analyze the monotonicity of v∗(d) in a di-

rect way since v∗(d) is defined by using “argmin“. Thus, we
introduce the solution candidate and analyze monotonicity
of the candidate. For any I ∈ P(N[M ]) such that

rank(AI) = |I|+R (18)

where M and R denote the dimensions of bin(d) and beq(d),
the solution candidate vc(I; d) is defined as

vc(I; d) := [
In 0n×(|I|+R)

] [ Q A�
I

AI 0(|I|+R)×(|I|+R)

]−1

[
p

bI(d)

]
(19)

where

AI :=

[
e�I Ain

Aeq

]
∈ R

(|I|+R)×N (20)

bI(d) :=
[

e�I bin(d)
beq(d)

]
∈ R

(|I|+R). (21)

Then, there exists I∗ such that

v∗(d) = vc(I∗; d)

(See [7]). If the solution candidate vc(I; d) is σ-monotone
with respect to d for “any” I, then v∗(d) is σ-monotone
with respect to d. Thus, by using vc(I; d), we can analyze
the monotonicity of v∗(d) in an indirect manner.

B. Solution to Scheduling Problem

First, we analyze monotonicity of the solution v∗|k in (10).
The solution v∗|k is a function of dk ∈ [dk, dk] ⊂ R and
xk−1 ∈ [xk−1, xk−1] ⊂ R. In view of this, we show that
v∗|k is monotone with respect to dk and xk−1. For simplicity
of notation, we omit the subscript |k in the following, if not
confusing.

By using (19), the solution candidate for the solution v∗

can be described as

vc(I) = A�
I (AIA�

I )
−1bI + {Im −A�

I (AIA�
I )

−1AI}p,
where AI is defined as in (20) and bI is defined as in (21).
The elements of AI , Ain and Aeq, are defined as in (11)
and (13), respectively. The elements of bI , bin and beq, are
defined as in (12) and (14), respectively. Furthermore, the
partial derivatives of vc(I) with respect to d|k and xk−1 can
be calculated as

∂vc(I)
∂d|k

= A�
I (AIA�

I )
−1AI (22)

∂vc(I)
∂xk−1

= A�
I (AIA�

I )
−1 ∂bI

∂xk−1
. (23)

Then, the following lemma shows that vc(I) is monotone
with respect to d|k.

Lemma 1: For any I such that (18), vc(I) is σ-monotone
with respect to d|k for σ = 1m×m. Furthermore, all elements
of ∂vc(I)

∂d|k
∈ R

m×m are nonnegative and less than or equal
to 1. �

Furthermore, the following lemma shows that vc(I) is
monotone with respect to xk−1.

Lemma 2: For any I such that (18), vc(I) is σ-monotone
with respect to xk−1 for σ = −1m×1. Furthermore, all



elements of ∂vc(I)
∂xk−1

∈ R
m×1 are nonpositive and greater than

or equal to − 1
ΔT . �

By using Lemma 1 and 2, the solution v∗ is shown
to be monotone with respect to d|k and xk−1. Next, we
analyze monotonicity of Δx∗ in (15) and x∗ in (16). They
are the functions of dk and xk−1 as well as v∗. To prove
their monotonicity, we consider monotonicity of Δxc and
xc defined as

Δxc(I) := vc(I)− d|k (24)
xc(I) := xk−11m +ΔTMmΔxc(I). (25)

Then, the following lemma shows that Δxc(I) and xc(I)
are monotone with respect to d|k and xk−1.

Lemma 3: For any I such that (18),
• Δxc(I) is σΔx/d-monotone with respect to d|k,
• Δxc(I) is σΔx/x-monotone with respect to xk−1,
• xc(I) is σx/d-monotone with respect to d|k, and
• xc(I) is σx/x-monotone with respect to xk−1

with σΔx/d, σΔx/x, σx/d, and σx/x defined as

σΔx/d(i,j) :=

{ −1 if i = j
1 otherwise , σΔx/x(i) := −1

σx/d(i,j) :=

{ −1 if i ≥ j
1 otherwise , σx/x(i) := 1

where σΔx/d(i,j) denotes the (i, j)-element of σΔx/d,
σΔx/x(i) denotes the ith element of σΔx/x, and σx/d(i,j)

and σx/x(i) are defined as in the same manner. �
By using Lemma 3, Δx∗ and x∗ are shown to be monotone

with respect to d|k and xk−1. The following theorem gives
the solution to Problem 1.

Theorem 1: The solution of Problem 1 is given as

v∗1|k = v∗1|k(dk, xk−1), v1|k∗ = v∗1|k(dk, xk−1)

Δx
∗
1|k = Δx∗

1|k(dk, xk−1), Δx∗
1|k = Δx∗

1|k(dk, xk−1)

x∗
1|k = x∗

1|k(dk, xk−1), x∗
1|k = x∗

1|k(dk, xk−1).

�
Proof: From the results of Lemma 1, 2, and 3,

v∗(dk, xk−1), Δx∗(dk, xk−1), and x∗(dk, xk−1) are mono-
tone with respect to dk, xk−1. Then, the claim follows.
By using Theorem 1, the upper and lower limits of the
optimal generation profile can be obtained by solving the
quadratic programming with 2n.

IV. NUMERICAL SIMULATION

In this section, we show the efficiency of the proposed
method for scheduling of power generation and battery
charge/discharge cycles. We consider the supply-demand
balance in Tokyo area having 19 million consumers, where
three million consumers have storage batteries.

The demand prediction is made on the basis of an actual
power consumption data q ∈ R

24 on May 30, 2010, and
PV prediction data on the same day, which corresponds to
the nominal profile of PV power prediction p̂ ∈ R

24 and
its upper and lower limits p ∈ R

24, p ∈ R
24. The upper and
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Fig. 3. (a) Power consumption and PV power prediction, (b) Interval
Prediction of demand

TABLE I
PARAMETERS

parameter numerical value unit
Δxmin 3000 [MW]
Δxmax -3000 [MW]
xmin 0 [MWh]
xmax 15000 [MWh]
x0 0 [MWh]
xd 0 [MWh]
a0 3.16 ×105 [JPY/h]
a1 4.60 ×10−3 [JPY/Wh]
a2 1.05 ×10−12 [JPY/W2h]

lower limits of demand prediction d ∈ R
24, d ∈ R

24 and the
nominal profile of demand prediction d̂ ∈ R

24 are calculated
as q − p, q − p and q − p̂, respectively. Since the prediction
uncertainty of power consumption is much lower than that
of PV, that of power consumption is zero in the simulation.

The actual power consumption data with one hour sam-
pling is available from [18]. The data of PV power prediction
is made based on the statistics of the past data. It should be
noted that we scale the PV power prediction data so that
its peak value becomes 30GW, which corresponds to the
situation where 10 million consumers have the solar panels
of 3kW complying with [1].

The profiles of the power consumption and the PV pre-
diction interval are shown in Fig. 3(a), where the power
consumption, the nominal PV prediction, the upper and lower
limits of PV prediction are shown by the dashed-dotted line,
the dotted line and the solid lines, respectively.

From them, we obtain the demand prediction interval as
shown in Fig. 3(b), where we subtract 10 GW corresponding
to the amount of power generation by basis generators, such
as nuclear plants. Here, for the simulation of operation on
the day of interest, we produce 50 trajectories of demand
prediction shown by the thin solid lines, which are randomly
produced within the prediction interval.

We set the parameters in (2)–(8) as in Table I. The
parameters a0, a1, a2 are given according to [7]. Under this
setting, for the demand prediction interval in Fig. 3(b), we
perform the day-ahead scheduling. The results are shown
in Fig. 4(a), (b), and (c), which are the optimal profiles of
power generation, battery charge/discharge power, and bat-
tery stored energy, respectively. In each figure, the thick solid
lines denote the upper and lower limits of the corresponding
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Fig. 4. (a) The Optimal Profiles of Power Generation, (b) The Optimal
Profiles of Battery Charge/Discharge Power, (c) The Optimal Profiles of
Battery Stored Energy

values, the dotted line denotes the solution profile of model
predictive control for the nominal demand prediction, and
the thin solid lines represent the solution profile of model
predictive control for the randomly produced demand profiles
in Fig.3(b).

Thin solid lines in each figure does not reach the up-
per and lower limits computed via monotonicity analysis
(monotonicity method). This implies that exactly estimating
the upper and lower limits by using random demand profile
(Monte Carlo method) is difficult. In contrast, the proposed
method provides its upper and lower limits appropriately.

V. CONCLUDING REMARKS

This paper has addressed a problem of the day-ahead
scheduling for the supply-demand-storage balance with ex-
plicit consideration of the model predictive power generation.
We use interval prediction to express the prediction uncer-
tainty and formulate the problem of the day-ahead scheduling
as an interval-valued allocation problem. In this interval-
valued allocation problem, we suppose that the amount of
power generation is determined in a manner of model pre-
dictive control that is compatible with the online monitoring

of demand at the phase of operation. Furthermore, we have
given a solution to the problem by using an approach based
on the monotonicity analysis with respect to the optimal
solution. Finally, we have shown that the proposed method
provides the upper and lower limits for power generation and
charge/discharge power appropriately by using the numerical
simulations. A generalization to multiple generators as well
as a consideration of the charge/discharge efficiency of
storage batteries are currently under investigation.
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