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Abstract— This paper proposes a design method for low-
dimensional linear functional observers based on a model re-
duction approach. In contrast to existing methods for designing
approximate observers, this method can guarantee not only
stability preservation but also an a priori L2-error bound for
the observer approximation. Moreover, owing to the fact that
this method can be applied to any Luenberger-type functional
observers, the method is compatible with the standard feedback
gain determination methods, such as pole placement techniques.
The efficiency of the proposed method is shown through a
numerical example for electric power network systems.

I. INTRODUCTION

Along with the recent technical development in engi-

neering, the architecture of systems covered by the control

community has tended to become more complex and larger in

scale. For example, in smart grid, it is required to control an

electric power system which involves hundreds of thousands

consumers. In order to control such large-scale systems,

observers are needed to estimate the states of systems. This is

simply because it is difficult to measure all states. However,

since existing observer is comparably large with a system

to be observed, a high-dimensional observer is required for

large-scale systems. In view of this, a design method for

low-dimensional observers is crucial to deal with large-scale

systems.

For linear systems, a number of observer design methods

have been developed [1], [2], [3], [4], [5]. In this line of

work, full or partial state observers can be designed from the

view point of exactly canceling the effect of external input

signals with respect to state estimation error. In other words,

the notion of approximation is not introduced in these design

methods. This implies that the state-space of observers must

include states having even little influence on state estimation.

Therefore, it is difficult to design low-dimensional observers

based on the above methods.

Furthermore, low-dimensional observer design methods

have been addressed in [6], [7], [8]. For example, [8]

proposes a design procedure of reduced order observers for

approximated models obtained by the balanced truncation.

However, in such observer design, it is not necessarily easy

to obtain a reduced order observer with a specified error

precision in a direct way. This is because the performance
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of the observation is indirectly determined throughout the

approximation error by model reduction.

In this paper, we propose a novel method of low-

dimensional observer design that satisfies a specified es-

timation error precision. The proposed approach and the

approaches mentioned above are schematically depicted in

Fig. 1. In contrast to the existing approaches, our approach

uses observer reduction where a reduced order observer

approximates a full-state observer for the original system.

A major advantage of this approach is that model reduction

techniques are available. In particular, we utilize structured

model reduction proposed in [9], [10], where an a priori

approximation error bound is obtained. As a result, we derive

an a priori L2-error bound on the performance degradation

for the observer reduction. It should be remarked that, in the

proposed design method, a feedback gain of the full state

observer can be designed independently of reduction. Thus,

the proposed method can use existing design methods to

determine the gain. Finally, the efficiency of the proposed

method is shown through an example of electric power

network systems.

This paper is organized as follows: In section II, we

formulate a design problem of low-dimensional functional

observers. In section III, we devise a methodology to design

the observer by biorthogonal projection. Furthermore, an a

priori state estimation error bound is also derived. Section

IV shows the efficiency of the proposed method by applying

it to an electric power network. Finally, section V concludes

this paper.

Notation The following notation is to be used:

R set of real numbers

In unit matrix of size n× n

M ≺ On (M � On) negative (semi)definiteness of a

symmetric matrix M ∈ R
n×n

M ≻ On (M � On) positive (semi)definiteness of a

symmetric matrix M ∈ R
n×n

im(M) range space spanned by the col-

umn vectors of a matrix M

tr(M) trace of a matrix M

diag(M1, . . . ,Mn) block diagonal matrix having

matrices M1, . . . ,Mn on its

block diagonal

The L2-norm of a square integrable function v(t) ∈ R
n is

defined by

‖v(t)‖L2
:=

(
∫ ∞

0

v(t)Tv(t)dt

)
1

2

.



Fig. 1. Schematic depiction toward low-dimensional observers.

The H∞-norm of a stable proper transfer matrix G and the

H2-norm of a stable strictly proper transfer matrix G are

respectively defined by

‖G(s)‖H∞
:= sup

ω∈R

‖G(jω)‖,

‖G(s)‖H2
:=

(

1

2π

∫ ∞

−∞

tr(G(jω)GT(−jω))dω

)
1

2

where ‖ · ‖ denotes the induced 2-norm.

II. PROBLEM FORMULATION

A. Design Problem of Low-dimensional Functional Ob-

server

In this section, we formulate a design problem for low-

dimensional observers. Let us consider an n-dimensional

linear system

Σ :







ẋ = Ax+Bu

y = Cx+Du

z = Sx

(1)

with x(0) = x0, A ∈ R
n×n, B ∈ R

n×mu , C ∈ R
my×n,

D ∈ R
my×mu and S ∈ R

mz×n. In this system, y ∈
R

my denotes a measurement output signal and z ∈ R
mz

denotes a signal to be estimated, which can be regarded

as a specific sets of states of interest. In this paper, to

simplify the arguments, we deal with only stable systems,

with similar results available also for unstable systems, and

assume that the system is observable, i.e., the observability

matrix [CT, (CA)T, . . . , (CAn−1)T]T has full rank.

For Σ in (1), we define an n̂-dimensional functional

observer by

Σ̂obs :











˙̂
ξ = Âξ̂ + B̂u+ Ĥ(y − ŷobs)

ŷobs = Ĉξ̂ + D̂u

ẑobs = Ŝξ̂

(2)

with ξ̂(0) = ξ̂0, Â ∈ R
n̂×n̂, B̂ ∈ R

n̂×mu , Ĉ ∈ R
my×n̂, D̂ ∈

R
my×mu , Ŝ ∈ R

mz×n̂ and Ĥ ∈ R
n̂×my . In what follows,

Σ̂obs is called a functional observer since the estimated signal

ẑobs is a function of the state ξ̂. Without loss of generality,

we focus on the case of n̂ ≤ n. In this notation, a design

problem of low-dimensional functional observers is defined

as follows: Given an n-dimensional linear system Σ in (1),

find an n̂-dimensional functional observer Σ̂obs in (2) such

that ẑobs estimates z in a suitable sense.

One approach to this problem is to design an observer for

approximate models (low-dimensional models) of Σ in (1),

which can be obtained by applying existing model reduction

methods; see, e.g., [8], [11]. However, this approach possibly

leads to an undesirable result, since the performance of

the observation may be degraded by even a small error

in the approximation of Σ. In this sense, for designing a

desirable low-dimensional observer, we should deal with an

approximation error by explicitly taking into account the

dynamics of both Σ and Σ̂obs.

B. Problem Reformulation via Observer Reduction

In this subsection, we reformulate the above design prob-

lem as an observer reduction problem. For Σ in (1), let us

consider the following Luenberger-type functional observer

Σobs :







ξ̇ = Aξ +Bu+H(y − yobs)
yobs = Cξ +Du

zobs = Sξ

(3)

with ξ(0) = ξ0. In the rest of this paper, we assume that

the feedback gain H ∈ R
n×my is designed such that the

trajectory of the observation error

ez := z − zobs (4)

is desirable.

Let us construct a reduced order functional observer by

approximating Σobs in (3). More specifically, using biorthog-

onal projection [12], we construct Σ̂obs in (2) by

Â = PAP †, B̂ = PB, Ĉ = CP † (5)

D̂ = D, Ĥ = PH, Ŝ = SP †

where P ∈ R
n̂×n and P † ∈ R

n×n̂ satisfy PP † = In̂ and

ξ̂0 = Pξ0. We define the observation error for this reduced

observer by

êz := z − ẑobs. (6)

In this notation, we address the following observer reduction

problem.

Problem 1: Given a linear system Σ in (1), find an n̂-

dimensional functional observer Σ̂obs in (2) described by

the system matrices (5) such that n̂ ≤ n holds and the

performance degradation

‖ez − êz‖L2
(7)

is small enough for the impulse input u ∈ R
mu and any

bounded initial condition x0 ∈ R
n, where ez ∈ R

mz and

êz ∈ R
mz are defined as in (4) and (6).

Note that, for a given system Σ with a feedback gain

H , finding Σ̂obs just coincides with finding the biorthogonal

projection described by P and P † in (5). In the following

section, we analyze how the choice of P and P † affects the

property of the performance degradation ‖ez − êz‖L2
in (7).



III. MAIN RESULTS

A. Analysis of Functional Observer Reduction

In this subsection, we investigate the relation between the

performance degradation ‖ez − êz‖L2
and the choice of the

biorthogonal projection defined by P and P †. First, we show

the following lemma that will be needed for an error analysis

below.

Lemma 1: Let a stable linear system Σ in (1) be given,

and suppose that there exists V = V T ≻ On such that

Sγ(A,S;V ) ≺ O2n (8)

holds for

Sγ(A,S;V ) :=

[

ATV + V A+ STS V A

ATV −γ2V

]

. (9)

Let a Cholesky factor V 1

2

of V such that V = V T
1

2

V 1

2

, and

define P = WV 1

2

and P † = V −1
1

2

WT for W ∈ R
n̂×n such

that WWT = In̂ holds. Then
∥

∥

∥
SP †(sIn̂ − PAP †)−1PAV −1

1

2

∥

∥

∥

H∞

< γ (10)

holds for any W .

Proof: We use the bounded real lemma [12] to prove

(10). To this end, it suffices to show that

Fγ(PAP †, PAV −1
1

2

, SP †; In̂) ≺ On+n̂ (11)

holds, where

Fγ(A,B,C;V ) :=

[

ATV + V A+ CTC V B

BTV −γ2Imu

]

.

The left hand side of (11)

Fγ(PAP †, PAV −1
1

2

, SP †; In̂)

can be rewritten as

W̃Sγ(V 1

2

AV −1
1

2

, SV −1
1

2

; In)W̃
T

where W̃ := diag(W,W ). Note that W has full row rank. On

the other hand, we notice that Sγ(A,S;V ) can be rewritten

as

Ṽ TSγ(V 1

2

AV −1
1

2

, SV −1
1

2

; In)Ṽ

where Ṽ := diag(V 1

2

, V 1

2

). Thus, (8) is equivalent to

Sγ(V 1

2

AV −1
1

2

, SV −1
1

2

; In) ≺ O2n. (12)

Pre- and post-multiplication of (12) by W̃ yields (11). Thus,

(10) follows.

Lemma 1 shows that, if there exists a positive definite

matrix V such that (8) holds, then PAP † is stable and

a projection-based reduced model admits the H∞-bound

shown in (10) for any W . In fact, this H∞-bound plays an

important role for the error analysis in the following theorem,

which gives a solution to the observer reduction problem

defined in Section II-B. In what follows, we assume that

ξ0 = 0 for Σobs in (3) for simplicity.

Theorem 1: Given Σ in (1) and Σobs in (3), define

A =

[

A−HC HC

0 A

]

, B :=

[

B

B

]

. (13)

Let K = KT � On such that

AK +KAT + BBT + α2diag(0, In) = 0 (14)

holds for α ≥ ‖x0‖. Furthermore, let γ > 0 such that

Sγ(A−HC,S;V ) ≺ O2n (15)

holds for Sγ defined as in (9), and define a Cholesky factor

V 1

2

of V such that V = V T
1

2

V 1

2

. If W ∈ R
n̂×n satisfies

WWT = In̂ and

im
(

(SV −1
1

2

)T
)

⊆ im(WT),
√

tr(Φ)− tr(WΦWT) ≤ ǫ

(16)

where

Φ := V 1

2

K1:nV
T
1

2

∈ R
n×n (17)

and K1:n ∈ R
n×n denotes the principal submatrix of K

corresponding to the first n rows and columns, then Σ̂obs

in (2) described by (5) with P = WV 1

2

and P † = V −1
1

2

WT

satisfies

‖ez − êz‖L2
≤ γǫ (18)

for the impulse input u, where ez and êz are defined as in

(4) and (6), respectively.

Proof: Define S := [−S, S], X0 := [0, xT

0 ]
T and

P := diag(P, In), P† := diag(P †, In).

By letting X := [ξT, xT]T, we have

Σez :

{

Ẋ = AX + Bu
ez = SX

with X (0) = X0. Similarly, by letting X̂ := [ξ̂T, xT]T, we

have

Σ̂êz :

{

˙̂
X = PAP†X̂ + PBu

êz = SP†X̂

with X̂ (0) = PX0. Consider the similarity transformation of

the error system defined by Σez and Σ̂êz with

T =

[

−P In+n̂

I2n 0

]

, T−1 =

[

0 I2n
In+n̂ P

]

.

Then, we have

Tdiag(A,PAP†)T−1 =

[

PAP† −PAP
†
P

0 A

]

T

[

B
PB

]

= T

[

0
B

]

and [S − SP†]T−1 = [−SP† SP
†
P], where

P :=
[

WV 1

2

, 0
]

, P
†
:=

[

WV −1
1

2

, 0
]T



for W ∈ R
(n−n̂)×n such that [WT,W

T

]T ∈ R
n×n is unitary.

Note that

P
†
P = JP

†
P, J := diag(In, 0)

holds from the block structure of P
†
P . Thus, it follows that

‖ez − êz‖L2
= ‖Θ(s)JP

†
P(sI2n −A)−1Z‖H2

where

Θ(s) := SP†(sIn+n̂ − PAP†)−1PA+ S

and Z satisfies

ZZT = BBT + X0X
T

0 .

Since SV −1
1

2

W
T

= 0 follows from the first condition in (16),

we can verify that

Θ(s)JP
†
P = [θ(s)V −1

1

2

, 0]diag(W
T

WV 1

2

, 0)

holds, where

θ(s) := SP †(sIn̂ − P (A−HC)P †)−1P (A−HC).

Thus, we obtain

‖ez − êz‖L2
≤

‖θ(s)V −1
1

2

‖H∞
‖[WV 1

2

, 0](sI2n −A)−1Z)‖H2
.

Lemma 1 with (15) guarantees ‖θ(s)V −1
1

2

‖H∞
< γ. Further-

more, from simple calculation, we verify that

ZZT � BBT + α2diag(0, In).

Thus, owing to the monotonicity of the solution of the

Lyapunov equation, the second condition in (16), which can

be rewritten as
√

tr(WΦW
T

) =

√

tr(WV 1

2

K1:nV
T
1

2

W
T

) ≤ ǫ.

This guarantees that

‖[WV 1

2

, 0](sI2n −A)−1Z)‖H2
≤ ǫ.

Hence, the claim follows.

Theorem 1 provides an appropriate biorthogonal projec-

tion to approximate the Luenberger-type functional observer

Σobs in (3). This result is novel in the sense that, while ex-

plicitly taking into account the dynamics of Σ in (1) and Σobs

in (3), the performance degradation is evaluated in terms of

the L2-norm as shown in (18). Note that ǫ in (18) can be used

as a design criterion to regulate the approximating quality of

the resultant low-dimensional observer.

Remark 1: To find W ∈ R
n̂×n such as WWT = In̂ and

(16) for a prescribed ǫ, we can use the following procedure:

First, we find the set {(λi, vi)}i∈{1,...,n} of all eigenpairs of

Φ in (17), assuming without loss of generality λi ≥ λi+1

and ‖vi‖ = 1. Next, we find m ∈ {1, . . . , n} such that

ǫ2 ≥ λm+1 + · · ·+ λn (19)

and construct Vm = [v1, . . . , vm] ∈ R
n×m. Finally, by the

Gram-Schmidt process, we derive W such that

im(WT) = im([Vm, (SV −1
1

2

)T])

holds.

Remark 2: Even though the value of ‖x0‖ is not available

when we construct low-dimensional observers, α in (14) can

be used as a design parameter to assign a proportion of

the approximating quality between the input response and

initial value response. For example, if we give a larger α,

then a lager initial value x0 can be allowed, while a lager

performance degradation is possibly caused by the effect of

an input signal u, and vice versa.

B. Design Procedure of Low-Dimensional Functional Ob-

server

In this subsection, we describe a procedure for construct-

ing a low-dimensional observer that admits a prescribed L2-

error bound. First, for a pair (V, γ) satisfying (15), we notice

that (cV, γ) also satisfies (15) for any c ≥ 1. On the other

hand, since the eigenvalues of Φ in (17) linearly increase with

the scale of V , a smaller V is desirable for the minimization

of ǫ in (16). In view of this, it is reasonable to find a pair

(V, γ) such that (15) while minimizing β for

V ≺ βIn. (20)

In conjunction with this additional minimization, a procedure

to solve Problem 1 is provided as follows:

1) For a given stable system Σ in (1), design H ∈ R
n×my

in (3) that realizes a desired trajectory of the observation

error ez ∈ R
n×mz in (4).

2) Find a pair (V, γ) such that (15) while minimizing β >

0 for (20).

3) For fixed constants α ≥ 0 and ǫ ≥ 0, find W ∈ R
n̂×n

such that WWT = In̂ and (16), with the procedure

given in Remark 1.

4) Compute the biorthogonal projection as P = WV 1

2

and

P † = V −1
1

2

WT.

5) Construct the low-dimensional functional observer Σ̂obs

in (2) with (5).

The efficiency of this design procedure is demonstrated

through a numerical example in the following section.

IV. NUMERICAL EXAMPLE

A. Power Network Model

In this section, we deal with the following electric power

network system that consists of generators and loads [13],

[14]. Let N denote the number of generators. For each i ∈
{1, . . . , N}, the dynamics of the i-th generator is modeled

as

Σg
i :

{

φ̇i = Ãiφi +
1
Mi

b̃p
g
i

δ
g
i = c̃φi

(21)

where φi ∈ R
4 denotes the states of a prime mover and a

governor respectively, p
g
i ∈ R denotes the output power of a



generator, δ
g
i ∈ R denotes the electric angle of a generator,

and

Ãi :=

[

A
f
i

−1
Mi

bc

kibb
T Ac

i

]

, b̃ :=

[

b

0

]

, c̃ :=
[

c 0
]

for

A
f
i :=

[

0 1
0 −Di

Mi

]

, Ac
i :=

[

− 1
Ti

1
Ti

0 −kiRi

]

b :=

[

0
1

]

, c :=
[

1 0
]

.

Note that the generator Σg
i in (21) consists of a negative feed-

back interconnection of a governor and a prime mover, whose

system matrices are described by (Af
i , b, c) and (Ac

i , b, c),
respectively.

Furthermore, we suppose that a load is modeled as ro-

tational mass damper system for simplicity. Let L denote

the number of loads. Then, for each i ∈ {1, . . . , L}, the

dynamics of the i-th load is represented as

Σl
i :

{

ψ̇i = A
f
i ψi +

1
Mi

bpli + κibui

δli = cψi

(22)

where ψi ∈ R
2 denotes the angle and the angular velocity

of a rotor respectively, pli ∈ R denotes the output power of a

load, ui ∈ R denotes the power consumption of a load, and

κi ∈ R denotes a sensitivity gain. By letting

p := [pg1, . . . , p
g
N , pl1, . . . , p

l
L]

T

δ := [δg1 , . . . , δ
g
N , δl1, . . . , δ

l
L]

T,

the interconnection among the generators and loads can be

described by

p = −Y δ (23)

where Y ∈ R
(N+L)×(N+L) denotes an admittance matrix. In

addition, we take the measurement output y and the signal

z in (1) as

y := [φT

1 , . . . , φ
T

N ]T ∈ R
4N

z := diag(bT, . . . , bT)[ψT

1 , . . . , ψ
T

L]
T ∈ R

L.

This means that y is taken as the states of all generators and

z is taken as the angular velocity of all loads.

In this model, since Y is given by a Graph Laplacian, the

generators and loads are interacted by the difference of δ. It

means that any bias of δ does not affect the interaction. Since

the model has a zero eigenvalue, we establish a reference

value of δ. To this end, we assume, without loss of generality,

that the first generator is a reference component. According

to this, we define the state variable as

x := [(rg1)
T, . . . , (rgN )T, (rl1)

T, . . . , (rlL)
T]T ∈ R

n (24)

where n := 4N + 2L− 1 and

r
g
i :=

{

[0, I3]φ1, i = 1

φi − c̃Tc̃φ1, i ∈ {2, . . . , N}

rli := ψi − cTcφ1, i ∈ {1, . . . , L}.

Fig. 2. Electric power network system. Circles and triangles denote
generators and loads respectively. Reference generator is denoted as filled
circle.

Note that, by using 1n := [1, . . . , 1]T ∈ R
n and the

Kronecker product ⊗, (24) can be rewritten by

x = T [φT

1 , . . . .φ
T

N , ψT

1 , . . . , ψ
T

L]
T

where T := [0, In] T ∈ R
n×(n+1) and

T :=





I4 0

−

[

1N−1 ⊗ c̃Tc̃

1L ⊗ cTc

]

In−3



 ∈ R
(n+1)×(n+1).

Consequently, we can represent the dynamics of the power

network as Σ in (1) with

A = T {diag(Ã1, . . . , ÃN , A
f
1 , . . . A

f
L)− B̃Y C̃}T †

B = T

[

0(n+1−2L)×L

diag(κ1b, . . . , κLb)

]

C =
[

I4N 04N×(n+1−4N)

]

T †

D = 04N×L

S =
[

0L×(n+1−2L) diag(bT, . . . , bT)
]

T †

where 0m×n denotes the zero matrix in R
m×n, T † :=

T−1[0, In]
T∈ R

(n+1)×n and

B̃ := diag
(

1
M1

, . . . , 1
MN

, 1
M1

, . . . , 1
ML

)

diag(IN⊗b̃, IL⊗b)

C̃ := diag(IN ⊗ c̃, IL ⊗ c).

B. Design of Low-dimensional Functional Observer

In this subsection, we demonstrate the efficiency of our

method to construct low-dimensional observers. In what

follows, we use an electric power network composed of

N = 7 generators and L = 10 loads, which lead to

a 47-dimensional system. Furthermore, the parameters of

the system are fixed as follows: ki = 10 for all i, the

values of Ri, Di, Ti and Mi are randomly chosen from

{0.05, 0.1}, {2.5, 3.5, 5.5}, {1, 4} and {1.6, 5}, respectively,

and the nonzero elements of Y are chosen from [0.1, 1]. A

depiction of this system is given in Fig. 2, which shows the

interconnection structure of the generators and loads.

A Luenberger-type functional observer Σobs in (3) is

designed based on pole placement. By letting γ = 5.0, we

find a solution V such that (15) while minimizing β for
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(20). In Fig. 3, we plot the resultant dimension of reduced

observers versus the values of ǫ. Furthermore, we plot in

Fig. 4 the resultant performance degradation ‖ez − êz‖L2
in

(7) versus the values of ǫ. From these figures, we can see

that the parameter ǫ works a design criterion that regulates

the approximating quality of the resultant low-dimensional

observer.

Finally, Fig. 5 shows the trajectories of z in (1), zobs in (3),

and ẑobs in (2). In this figure, we only show the trajectories of

the first elements of z, zobs and ẑobs, since the others behave

similarly to the first elements. We can see from this figure

that the trajectories of ẑobs appropriately approach to that

of zobs as increasing the dimension n̂, which is a decreasing

function of ǫ as shown in Fig. 3. In addition, both trajectories

of ẑobs converge to that of z within 10 [sec], though the state

of the original system Σ does not still converge to zero.

V. CONCLUSION

In this paper, we have proposed a design method for low-

dimensional linear functional observers by taking a model re-

duction approach. The proposed method guarantees stability

preservation and an a priori L2-error bound for the observer

approximation. The efficiency of the proposed method has
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Fig. 5. Responses of angular velocity of the load shown as an outlined
triangle in Fig. 2.

been shown through an example of electric power network

systems.
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