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Abstract—This paper proposes two model reduction methods
for large-scale bidirectional networks that fully utilize a network
structure transformation implemented as positive tridiagonaliza-
tion. First, we present a Krylov-based model reduction method
that guarantees a specified error precision in terms of the
H∞-norm. Positive tridiagonalization allows us to derive an
approximation error bound for the input-to-state model reduction
without computationally expensive operations such as matrix
factorization. Second, we propose a novel model reduction
method that preserves network topology among clusters, i.e.,
node sets. In this approach, we introduce the notion of cluster
uncontrollability based on positive tridiagonalization, and then
derive its theoretical relation to the approximation error. This
error analysis enables us to construct clusters that can be
aggregated with a small approximation error. The efficiency of
both methods is verified through numerical examples, including
a large-scale complex network.

Index Terms—Model Reduction, Network Systems, Network
Clustering, Krylov Projection Method.

I. INTRODUCTION

DYNAMICAL systems over large-scale complex networks
(large-scale dynamical networks), whose behaviors are

described by an interaction of a large number of subsystems
interconnected over a network, have been widely studied
over the past decades. Examples of such dynamical networks
include social networks, biological networks, power networks,
and contagion networks (see [1], [2], [3], [4] for an overview).
In general, their large-scale complexity makes straightforward
application of the standard analysis and control synthesis
methods very difficult. Thus, model reduction techniques be-
come increasingly important as means of analysis and control
synthesis (see [5], [6], [7] for a general overview).

For linear systems, various model reduction methods such
as the balanced truncation [8], [9] and the Hankel norm
approximation [10] have been extensively investigated, in
which a bound of the approximation error in terms of, e.g.,
the H2-, H∞-, or Hankel norm is available (see [5], [11],
[12], [13]). Actually, these methods generate a reduced or-
der model conforming to a specified error precision through
a systematic procedure. However, they are not necessarily
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appropriate for the reduction of large-scale systems. This is
because they require computationally expensive operations
such as matrix factorization. Alternatively, moment matching
methods [14], [15], [16], including the Krylov projection
methods [5], [17], [18], [19], which suppress the discrepancy
of the frequency response for specific input signals, have
been developed toward the reduction of large-scale systems.
However, even though these methods can be implemented
by computationally efficient procedures, a priori error bounds
have not yet been derived, except for the optimal H2-reduction
procedure established in the past few years [20].

The application of the aforementioned model reduction
methods to large-scale dynamical networks raises a further
consideration; the connection structure among subsystems is
completely lost through the reduction. In other words, the
application of such traditional methods extinguishes the phys-
ical meaning of subsystem state variables. More specifically,
each state of the reduced model is obtained, in general, by a
linear combination of all the original states. This limits the
use of the reduced order model when one addresses, e.g., the
distributed control problem and the sensor allocation problem.
Hence, for large-scale dynamical networks, it is important
to develop a network topology-preserving model reduction
method, in which the projection matrix for reduction has some
sparse structure to preserve a kind of network topology. To
this end, we are required to deal with the following three
challenges: (i) determining a set of subsystems, called a set
of clusters, (ii) deriving a reduced order model compatible
with the determined cluster set, and (iii) finding an error
bound without direct use of the original model. Moreover,
the implementation needs to be computationally efficient, for
aiming at the reduction of large-scale systems.

As one possible approach to this kind of structured model
reduction, [7] proposed a Krylov-based model reduction
method for interconnected systems, in which the Krylov
projection of each subsystem is considered to preserve the
interconnection structure among the subsystems. However,
this method not only requires a priori knowledge of the
decomposition of the whole system into subsystems, but also
provides no error evaluation. In a similar way, [12] proposed
a structured balanced truncation method for interconnected
systems in which the balanced truncation is applied to each
subsystem, and [21] addressed a problem of clustering subsys-
tems in the structured balanced truncation. However, they did
not theoretically discuss the relation between the subsystem
clustering and the resultant approximation error.

As related approaches, structure-preserving model reduc-
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tion methods, e.g., [22], [23], [24], and state aggregation-
based singular perturbation methods, e.g., [25], [26], [27],
have been intensively investigated. In the former methods,
reduced models are derived based on the Krylov projection
for preserving the underlying structures of systems, such as
the Lagrangian structure and the second-order structure, but
not the network topology. The latter methods provide some
theoretical relation between the approximation error and the
strength of interconnection among subsystems. However, the
singular perturbation approaches do not explicitly take into
account the effect of the external input. In [28], the authors
investigated the controllability of single-input networks from
the point of view of graph theory, but they dealt with only a
class of homogeneously interconnected networks. In addition,
a state aggregation-based model reduction was proposed in
[29]. However, no error analysis was carried out.

In contrast to these existing approaches, we propose two
kinds of model reduction methods based on positive tridiag-
onalization, focusing on a class of large-scale bidirectional
networks having a symmetric system matrix. First, we develop
a Krylov-based model reduction method that guarantees a
specified error precision. Our approach uses a concept of
network structure transformation called positive tridiagonal-
ization, which clarifies error analysis for a class of Krylov
projection methods in terms of the H∞-norm. It should be
emphasized that the positive tridiagonalization is not utilized
in the standard Krylov projection methods and this approach
gives a further possibility for the error evaluation of those
methods. Second, on the basis of the first method, we propose
a novel clustering-based state aggregation procedure as one of
the model reduction methods that preserve network topology
among clusters, where network clustering, i.e., decomposi-
tion of the whole system into subsystems, is implemented
in a systematic manner. By aggregating the states of the
constructed clusters into lower-dimensional ones, we obtain
an aggregated model that preserves the connection topology
among the clusters.

During this clustering-based state aggregation, we first in-
troduce a notion of cluster reducibility, which means that the
state variables contained in a cluster have similar behavior
for an arbitrary input signal, and then characterize the cluster
reducibility by means of positive tridiagonalization. Next, we
derive a qualitative relation between this reducibility and the
aggregation error of the input-to-state transfer function, which
allows us to use the reducibility as a design criterion for
reduction. Finally, we show that the aggregation error can be
evaluated by using the Krylov-based model reduction method
proposed in the former part of the paper. This approach
allows us to find a suitable cluster set in a systematic manner,
without requiring a priori knowledge of the decomposition of
the whole system into subsystems. It should be emphasized
that our clustering approach is completely different from the
existing ones in the sense that, fully utilizing the positive
tridiagonalization, we introduce an index for clustering that
is theoretically related to the resultant approximation error.
Furthermore, owing to the numerical efficiency of tridiagonal-
ization, our methods are applicable to large-scale bidirectional
networks. Preliminary versions of this paper are found in [30],

[31], [32], [33].
The rest of this paper is organized as follows. In Section

II, we describe the bidirectional network under investigation
and define positive tridiagonalization for that bidirectional net-
work. In Section III, based on the positive tridiagonalization,
we propose the systematic procedure of a Krylov-based model
reduction method that guarantees a specified error precision.
In the last part of the section, the efficiency of the theoretical
results is verified through a numerical example of a complex
network with 3000 nodes and 6000 edges. In Section IV, we
formulate a clustering-based state aggregation problem and
provide a solution by fully exploiting the properties of the
positive tridiagonalization. Furthermore, numerical examples
including a complex network show that the proposed method
is efficient. Concluding remarks are provided in Section V.
NOTATION: The following notation is used in this paper:
R set of real numbers
R+ set of nonnegative real numbers
In unit matrix of size n× n
eni ith column vector of In
eni1:i2 i1th to i2th columns of In
|I| cardinality of a set I
∥M∥ l2-induced norm of a matrix M , i.e.,

maximum singular value of M
∥M∥l∞ l∞-induced norm of a matrix M =

{mi,j}, i.e., maxi
∑

j |mi,j |
λmax(M) maximum eigenvalue of a symmetric

matrix M
λmin(M) minimum eigenvalue of a symmetric

matrix M
diag(v) diagonal matrix having a vector v on its

diagonal
Diag(M1, . . . ,Mn) block diagonal matrix having matrices

M1, . . . ,Mn on its block diagonal

The H∞-norm of a stable rational transfer matrix G is
defined by

∥G(s)∥H∞ := sup
ω∈R
∥G(jω)∥.

For a set I ⊆ {1, . . . , n}, enI ∈ Rn×|I| denotes the matrix
whose column vectors are composed of eni for each i ∈ I
(in some order of i), i.e., enI = [eni1 , . . . , e

n
im
] ∈ Rn×m for

I = {i1, . . . , im}. As required, the size of the zero matrix
is described by the subscript, i.e., 0n×m ∈ Rn×m. Finally, a
matrix M is said to be Metzler, if all the off-diagonal entries
of M are nonnegative.

II. PRELIMINARIES

In this study, we deal with a large-scale bidirectional net-
work whose general form is given as follows:

Definition 1: A linear system

ẋ = Ax+ bu (1)

with A ∈ Rn×n and b ∈ Rn is said to be a bidirectional
network (A, b) if A is stable and symmetric.

To simplify the arguments, we deal with only single-input
systems, with similar results available also for multi-input
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Fig. 1. Depiction of Bidirectional Networks.

cases [31], [33]. Typical examples of bidirectional networks
include dynamical systems coupled by undirected graphs (see
[4] for an overview of network systems and multi-agent
systems). For example, let us examine the following spatially
discrete reaction-diffusion system evolving over networks de-
scribed by

ẋi = −rixi+

n∑
j=1,j ̸=i

ai,j(xj−xi)+biu, i ∈ {1, . . . , n} (2)

where ri denotes the reaction rate (chemical dissolution) of
xi, and ai,j = aj,i for i ̸= j denotes the diffusion intensity
between xi and xj (see Fig. 1). In this figure, each state xi is
assigned on a node, which is referred to as the ith node. The ith
node has a self-loop, on which the reaction rate ri is assigned.
Furthermore, if ai,j ̸= 0, the ith and jth nodes are connected
by an edge, on which the diffusion intensity ai,j is assigned.
Throughout this paper, we use the same symbols of nodes,
edges and self-loops as in Fig. 1 for depicting bidirectional
networks.

System (2) is used as a primal model that represents diffu-
sion processes evolving over complex networks (see Chapter
18 in [34]). The interconnection topology of this system can
be represented in a graph-theoretic manner. By defining the
reaction matrix R := diag([r1, . . . , rn]) and the symmetric
weighted graph Laplacian L := {li,j} associated with

li,j =

{
−ai,j , i ̸= j∑n

j=1,j ̸=i ai,j , i = j,

it is represented as one of the bidirectional networks with

A = −(R+ L), b =

 b1
...
bn


for the state vector x := [x1, . . . , xn]

T. Note that r1
...
rn

 = −A1n, 1n :=

 1
...
1

 ∈ Rn (3)

follows from L1n = 0. This coupled dynamics is stable if at
least one ri is strictly positive, ai,j are nonnegative for all i,
and the graph is connected.

In this paper, we address two kinds of model reduction
problems involving such bidirectional networks. To this end,

Fig. 2. Depiction of Positive Tridiagonal Realization.

we first introduce a state-space realization having a positive
tridiagonal structure, which plays a central role in this study.

Definition 2: Let (A, b) be a bidirectional network. A uni-
tary transformation by H ∈ Rn×n is said to be positive tridi-
agonalization, if Â := HTAH ∈ Rn×n and b̂ := HTb ∈ Rn

+

are in the form of

Â =


α1 β1

β1 α2 β2

. . . . . . . . .
. . . . . . βn−1

βn−1 αn

 , b̂ =


β0

0
0
...
0

 (4)

with βi ≥ 0 for all i ∈ {0, . . . , n − 1}. Moreover, the pair
(Â, b̂) is referred to as a positive tridiagonal realization.

For the positive tridiagonal realization, the state vector is
denoted by x̂ = [x̂1, . . . , x̂n]

T := HTx. This realization has
the following two properties. The first is positivity, i.e., it
belongs to a class of positive systems because Â is Metzler
and the entries of b̂ are all nonnegative (see [35], [36] for
the general overview of positive systems). The second is
a tridiagonal structure, i.e., it represents serially cascaded
autonomous systems equipped with a boundary input (see
Fig. 2). In this figure, γi and βi denote the intensity of the
reaction and the diffusion of x̂i, respectively, where each γi
is given by  γ1

...
γn

 = −Â1n, (5)

in a manner similar to (3). In the following sections, these
properties of the positive tridiagonal realization will be fully
exploited to analyze bidirectional networks. First, we show
the existence and uniqueness of positive tridiagonalization as
follows:

Theorem 1: For every bidirectional network (A, b), there
exists a transformation matrix H ∈ Rn×n for positive tridiag-
onalization. Furthermore, for

i∗ :=

{
min

i∈{1,...,n−1}
{i : βi = 0}, if

∏n−1
i=1 βi = 0

n, otherwise,
(6)

the submatrix Hen1:i∗ ∈ Rn×i∗ is uniquely determined among
all transformation matrices.

Effective tridiagonalization procedures for large matrices
have been widely investigated in the control theory as well
as the numerical linear algebra community for various appli-
cations such as eigenvalue computations and model reduction.
For instance, the Householder transformation (Chapter 6 in
[37]), the Lanczos procedure of Krylov projection methods
(Chapter 10 in [5]), and the transformation into controller
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Hessenberg form [38] for a symmetric matrix are well known.
Although every symmetric matrix admits a tridiagonal form,
the selection of the sign of each βi is generally not considered
in the literature such as [38]. On the other hand, this study
focuses on the case in which all βi are nonnegative, i.e.,
positive tridiagonal realization. The algorithm for positive
tridiagonalization, which shows that the transformation al-
ways exists, is derived straightforwardly from the existing
transformation such as the Householder transformation. See
Appendix A for the proof.

In addition, the structure of (Â, b̂) in (4) leads to i∗ in (6)
coinciding with the dimension of the controllable subspace
of (A, b). Thus the uniqueness of Hen1:i∗ in Theorem 1
implies that the transformation matrix for positive tridiagonal-
ization corresponding to the controllable subspace of (A, b) is
uniquely determined. Appendix A contains this proof.

As for computational complexity, the above positive tridi-
agonalization procedure does not require computationally ex-
pensive operations. More specifically, if we adopt the primary
algorithm based on the Householder transformation, its com-
plexity is at most (2/3)n3 even for dense matrices (see Chapter
6 in [37]). In addition, it is known that the complexity can be
dramatically reduced to O(n) by explicitly taking advantage
of particular matrix properties such as sparsity [5], [39]. In this
sense, positive tridiagonalization can be implemented even for
large-scale bidirectional networks.

Remark 1: Every (even nonsymmetric) tridiagonal matrix
Â

′
= {â′

i,j} such that

â
′

i,i+1â
′

i+1,i ≥ 0, i ∈ {1, . . . , n− 1}

is diagonally similar to a symmetric positive tridiagonal matrix
Â, i.e., there exists a nonsingular diagonal matrix D such
that DÂ

′
D−1 = Â. Therefore, once the realization (Â

′
, b̂)

is derived, it allows analyses similar to those in the following
sections.

III. KRYLOV-BASED MODEL REDUCTION

The aim of this section is to provide a solution to the
following problem of Krylov-based model reduction with a
specified error precision. Hereafter, we denote the input-to-
state transfer function of (A, b) by

g(s) := (sIn −A)−1b. (7)

Problem 1: Consider a bidirectional network (A, b), and
define g in (7). Given a constant δ ≥ 0, find a k-dimensional
approximant ĝ(k) such that k ≤ n and

∥g(s)− ĝ(k)(s)∥H∞ ≤ δ. (8)

Our approach to solving Problem 1 is as follows. For
a given bidirectional network (A, b), we consider the k-
dimensional projection based on positive tridiagonalization,
i.e., the approximant is given by

ĝ(k)(s) := H(k)(sIk − Â(k))−1b̂(k) (9)

where

H(k) := Hen1:k, Â(k) := (H(k))TAH(k), b̂(k) := (H(k))Tb
(10)

Note that Â(k) ∈ Rk×k and b̂(k) ∈ Rk are given by
truncating the positive tridiagonal realization (Â, b̂) up to the
k-dimension; in other words, they satisfy Â(k) = (en1:k)

TÂen1:k
and b̂(k) = (en1:k)

Tb̂. Then, the truncation error will be found
to be characterized by its DC gain owing to the positivity
of (Â, b̂); moreover, it will be shown that the truncation
error monotonically decreases as k increases by virtue of the
tridiagonal structure of (Â, b̂). Thus, this error analysis will
provide a solution to Problem 1, as shown in the following
subsection.

A. Approximation Error Analysis based on Positive Tridiago-
nal Realization

First, we describe two fundamental lemmas valid for general
single-input single-output positive systems. The first is well-
known (see Theorem 4 in [40]).

Lemma 1: Consider a single-input single-output positive
system f(s) = c(sIn − A)−1b, where A ∈ Rn×n is Metzler
and stable, b ∈ Rn

+, and c ∈ R1×n
+ . Then, ∥f(s)∥H∞ = f(0).

This lemma shows that the H∞-norm of every positive
system is characterized by its DC gain. Using this lemma, we
derive the second lemma, which will be used for truncation
error analysis:

Lemma 2: Consider a single-input single-output positive
system f(s) = c(sIn − A)−1b, where A ∈ Rn×n is Metzler
and stable, b ∈ Rn

+, and c ∈ R1×n
+ . Let I ⊆ {1, . . . , n} be

given, and define the truncated model associated with I by

fI(s) := cI(sI|I| −AI)
−1bI (11)

where AI := (enI)
TAenI ∈ R|I|×|I|, bI := (enI)

Tb ∈ R|I|
+ , and

cI := cenI ∈ R1×|I|
+ . Then, for any I, the truncated model fI

is stable and it satisfies

∥f(s)− fI(s)∥H∞ = f(0)− fI(0). (12)

Proof: Since any principal submatrix of stable Metzler
matrices is also stable, fI is stable (see Chapter 2.5 in [41]).
In order to show the validity of (12), we first denote the error
system by

f(s)− fI(s) = ce(sIn+|I| −Ae)
−1be

where

Ae := Diag(A,AI), be :=

[
b
−bI

]
, ce :=

[
c cI

]
.

Note that enI ∈ Rn×|I|
+ and enI ∈ Rn×|I|

+ satisfy

enI(e
n
I)

T + enI(e
n
I)

T = In

with I := {1, . . . , n}\I. Then, the similarity transformation
of the error system given by

V =

[
(enI)

T I|I|
In 0

]
, V −1 =

[
0 In
I|I| −(enI)T

]
yields

V AeV
−1 =

[
AI (enI)

TAenI(e
n
I)

T

0 A

]
, V be =

[
0
b

]
,

ceV
−1 =

[
cI cenI(e

n
I)

T
]
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where the entries of V be and ceV
−1 are all nonnegative, and

V AeV
−1 is Metzler because (enI)

TAenI ∈ R|I|×|I|
+ is com-

posed of off-diagonal entries of A. Hence, applying Lemma 1
to this realization proves (12).

Lemma 2 shows that the maximal gain of not only positive
systems, but also error systems is characterized by the DC
gain. However, this lemma does not suggest how the system
should be truncated. Thus, we further focus on the positive
tridiagonal realization, which resolves this concern, as shown
in the following theorem:

Theorem 2: Given a positive tridiagonal realization (Â, b̂),
define

X̂(s) := (sIn − Â)−1b̂, X̂(k)(s) := (sIk − Â(k))−1b̂(k)

(13)
where Â(k) and b̂(k) are defined as in (10), and denote the ith
entries of X̂ and X̂(k) by X̂i and X̂

(k)
i , respectively. Then,

X̂
(k)
i is stable and it satisfies

∥X̂i(s)− X̂
(k)
i (s)∥H∞ = X̂i(0)− X̂

(k)
i (0) (14)

for all i ∈ {1, . . . , k} and k ∈ {1, . . . , n}. In addition, the
right-hand side of (14) monotonically decreases as k increases,
and the truncation error, i.e., the value of the left-hand side of
(14), is minimal among all k-dimensional truncated models of
X̂i associated with any I ⊆ {1, . . . , n} satisfying |I| = k.

Proof: The equality (14) follows from applying Lemma 2
to X̂i with I := {1, . . . , k} because X̂i is a single-input
single-output positive system. In what follows, let us prove
the monotonicity and minimality of the truncation error. To
prove the monotonicity, it is sufficient to show that

[X̂i(0)− X̂
(k)
i (0)]− [X̂i(0)− X̂

(k+1)
i (0)]

= X̂
(k+1)
i (0)− X̂

(k)
i (0) ≥ 0.

Note that X̂(k)
i is obtained by truncating the (k+1)th state of

X̂
(k+1)
i . Hence, the inequality follows from applying Lemma 2

to X̂
(k+1)
i and its truncated model X̂(k)

i . Next, to prove the
minimality, we consider Ĩκ such that |Ĩκ| = k and

Ĩκ = {1, . . . , κ} ∪ J , J ⊆ {κ+ 2, . . . , n}

with κ ∈ {1, . . . , k}. Furthermore, we denote the truncated
model of X̂i associated with Ĩκ by X̂ Ĩκ

i . Note that Ĩκ can
represent all sets of indices such that |Ĩκ| = k. First, we
consider the case of 1 ∈ Ĩκ. Clearly, if κ = k, i.e., if J = ∅,
then X̂ Ĩκ

i = X̂
(κ)
i holds. If κ < k, we have

(enĨ)
TÂenĨ =

[
Â(κ) 0

0 (enJ )TÂenJ

]
, (enĨ)

Tb̂ =

[
b̂(κ)

0

]
which follows from the structure of the tridiagonal realiza-
tion. These imply that X̂ Ĩκ

i = X̂
(κ)
i holds for any J and

i ∈ {1, . . . , k}. Hence, it follows that

min
κ∈{1,...,k}

∥X̂i(s)− X̂ Ĩκ
i (s)∥H∞

= min
κ∈{1,...,k}

∥X̂i(s)−X̂(κ)
i (s)∥H∞≥∥X̂i(s)−X̂(k)

i (s)∥H∞

for all i ∈ {1, . . . , k}. Second, if 1 ̸∈ Ĩκ, then X̂ Ĩκ
i = 0

follows from (enĨκ
)Tb̂ = 0. Thus, for all i ∈ {1, . . . , k}, the

error
∥X̂i(s)− X̂ Ĩκ

i (s)∥H∞ = X̂i(0)

is larger than the right-hand side of (14). Hence, the minimality
of the truncation error follows.

Theorem 2 states that we have the exact truncation error
of the input-to-state mapping of the positive tridiagonal re-
alization. Even though Lemma 2 shows that the maximum
truncation error for every positive system can be evaluated
by the DC gain, it is, in general, nontrivial to systematically
determine a set I that leads to better precision. On the other
hand, Theorem 2 shows that retaining the first k states achieves
the least truncation error, and that the resultant truncation error
monotonically decreases as k increases due to the serially cas-
caded structure of the tridiagonal realization. The coordinate
transformation of each X̂i − X̂

(k)
i in Theorem 2 back to the

original one straightforwardly provides a solution to Problem 1
as follows:

Theorem 3: Given a bidirectional network (A, b), let (Â, b̂)
be its positive tridiagonal realization, and H ∈ Rn×n be its
transformation matrix. Define g in (7) and

Φ := Hdiag(−Â−1b̂) ∈ Rn×n (15)
Φ̂(k) :=

[
H(k)diag(−(Â(k))−1b̂(k)) 0n×(n−k)

]
∈ Rn×n

where Â(k), b̂(k) and H(k) are defined as in (10). Then, ĝ(k)

in (9) is stable and it satisfies

∥g(s)− ĝ(k)(s)∥H∞ ≤
√
n ∥Φ− Φ̂(k)∥l∞ . (16)

In addition, the right-hand side of (16) monotonically de-
creases as k increases.

Proof: We have

∥g(s)− ĝ(k)(s)∥H∞ ≤
√∑n

i=1 ∥gi(s)− ĝ
(k)
i (s)∥2H∞

≤
√
n max
i∈{1,...,n}

∥gi(s)− ĝ
(k)
i (s)∥H∞

where gi and ĝ
(k)
i denote the ith entries of g and ĝ(k),

respectively. Note that g = HX̂ and ĝ(k) = H(k)X̂(k) hold,
where X̂ and X̂(k) are defined as in (13). Using Theorem 2,
we have

∥gi(s)− ĝ
(k)
i (s)∥H∞ =

∥∥∥∥∥∥
n∑

j=1

hi,j{X̂j(s)− X̂
(k)
j (s)}

∥∥∥∥∥∥
H∞

(17)

≤
n∑

j=1

|hi,j | {X̂j(0)− X̂
(k)
j (0)}

=
n∑

j=1

∣∣∣hi,j{X̂j(0)− X̂
(k)
j (0)}

∣∣∣
= ∥Φi − Φ̂

(k)
i ∥l∞

where Φi and Φ̂
(k)
i denote the ith row vectors of Φ and Φ̂(k),

respectively, and X̂
(k)
j for each j ∈ {k + 1, . . . , n} is to be

replaced with zero. Hence, (16) follows from

max
i∈{1,...,n}

∥Φi − Φ̂
(k)
i ∥l∞ = ∥Φ− Φ̂(k)∥l∞ .
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Finally, the monotonicity of the right-hand side of (16) follows
from the monotonic decrease of X̂j(0) − X̂

(k)
j (0) in (17),

which has been shown in Theorem 2.
Theorem 3 gives an H∞-error bound of the approximant

ĝ(k). Thus, the result directly works as the Krylov-based model
reduction with a specified error precision. More precisely,
finding the minimum k such that the right-hand side of (16)
is less than δ ≥ 0, we obtain the k-dimensional approximant
ĝ(k), which is a solution to Problem 1. Note that, since Â is
tridiagonal and b̂ is a multiple of en1 , the vector −Â−1b̂ can be
efficiently calculated as the solution x of the linear equation
Âx + b̂ = 0. Actually, [42] proposed an algorithm to solve
such tridiagonal equations with complexity log2 n.

It should be further noted that, independent of the sign
of each βi in (4), its k-dimensional truncated model yields
the same transfer function, i.e., the external representation,
ĝ(k), in (9). This means that the kth iteration of the Lanczos
procedure of the Krylov projection methods indeed yields the
same approximant. However, to the best of our knowledge,
an a priori error bound like (16) has not yet been derived.
The success of our approach results from introducing the
transformation into the positive tridiagonal realization, i.e., an
internally positive representation, by focusing on the symmetry
of the system matrix A. This approximation with a specified
error precision will also work effectively in Section IV.

Remark 2: Based on the above analysis, the Krylov-based
model reduction of multi-output cases, i.e., (A, b) with C ∈
Rp×n, is also attained by

∥Cg(s)− Cĝ(k)(s)∥H∞ ≤
√
p ∥C(Φ− Φ̂(k))∥l∞ ,

which is proven in a manner similar to the proof of Theorem 3.

B. Large-Scale Example: Krylov-based Model Reduction of a
Complex Network System

In this subsection, we show the efficiency of Theorem 3
through an example of the model reduction of a large-scale
bidirectional network. Let us consider a diffusion process
evolving over the Holme-Kim model [1] composed of 3000
nodes and 6000 edges, whose interconnection topology is
depicted in Fig. 3. In this figure, we use the same symbols of
nodes and edges as those in Fig. 1 to show the interconnection
topology. This network is an extension of the Barabasi-Albert
model, which is one of the best-known complex network
models. Actually, the Holme-Kim model is known to have
a scale-free and small-world property as well as a high cluster
coefficient.

The bidirectional network (A, b) considered here is fixed
as follows. The input affects only one node, i.e., b = e30001 .
For A ∈ R3000×3000 in (2), we randomly choose the diffusion
terms ai,j from (0, 1] if nodes i and j for i ̸= j are connected,
otherwise they are set to 0, and we give the reaction terms as
r1 = 1 and ri = 0 for all i ∈ {2, . . . , 3000}.

The positive tridiagonalization of (A, b) yields (Â, b̂) with
its transformation matrix H , for which Fig. 4 depicts the value
of the reaction term γk in (5) (the broken line) and the value
of the diffusion term βk in (4) (the line of ∗) versus each
k in the horizontal axis. In this figure, since no remarkable

Fig. 3. Holme-Kim Model with 3000 Nodes and 6000 Edges.
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Fig. 4. Plots of Diffusion Term βk (Line of ∗) and Reaction Term γk
(Broken Line) of Â.

changes appear after k = 200, we show the plots of only the
first 200 values. We can see that the reaction of x̂k and the
diffusion between x̂k and x̂k+1 become weaker as k increases.
This tendency suggests that x̂k for k ≫ 1 makes a smaller
contribution to the input-to-state mapping.

Furthermore, Fig. 5 shows the right-hand side of (16) in
the logarithmic scale for each value of k. It is found that
the error bound rapidly decreases as k increases. When we
give the admissible error bound δ = 1.0 × 10−4 in (8), the
minimum k such that the right-hand side of (16) is less than
δ is 110. This implies that the input-to-state mapping of the
3000-dimensional system g in (7) is well approximated by the
110-dimensional approximant ĝ(k) in (9).

This numerical experiment is implemented in MATLAB
2007b on a computer equipped with Intel Core i7 CPU-M620,
2.67 GHz, RAM 6.00 GB, and a 64-bit operating system.
As for the computation time, it takes 20.6 [sec] to find Φ
in (15), which includes the implementation of the positive
tridiagonalization, and 0.25 [sec] to calculate the right-hand
side of (16) for k = 110.

IV. CLUSTERING-BASED STATE AGGREGATION

In Section III, we established a systematic Krylov-based
model reduction procedure for bidirectional networks based on
positive tridiagonalization. Without relying on computationally
expensive operations, the procedure yields an approximant
of the transfer function that conforms to a specified error
precision. However, the procedure necessarily imposes the
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Fig. 5. Plots of Error Bound.

tridiagonal structure on the state-space realization of the
approximant independent of the original system. This means
that the reduced model does not preserve any interconnection
topology of the original bidirectional network. Actually, the
same difficulty is confronted by most traditional model reduc-
tion methods, such as the balanced truncation, the Hankel-
norm approximation, and the Krylov projection methods [5],
[6]. To overcome this difficulty, we provide in this section a
novel model reduction method that is implemented through
state aggregation. The main feature of this method is to
preserve network topology among node sets, called clusters,
and also guarantee a specified error precision. In addition,
it is found that the Krylov-based model reduction proposed
in Section III is an efficient tool for evaluating the resultant
aggregation error.

A. Problem Formulation

In this subsection, we formulate a network topology-
preserving model reduction problem. To this end, we begin
with the following definition of state aggregation:

Definition 3: Let (A, b) be a bidirectional network. The
family of an index set {I[l]}l∈L for L := {1, . . . , L} is called
a cluster set, each of whose elements is referred to as a cluster
if each element I[l] is a disjoint subset of {1, . . . , n} such that∪

l∈L

I[l] = {1, . . . , n}. (18)

Furthermore, an aggregation matrix compatible with {I[l]}l∈L
is defined by

P := Diag(p[1], . . . , p[L])Π ∈ RL×n (19)

with p[l] ∈ R1×|I[l]| such that ∥p[l]∥ = 1, and the permutation
matrix

Π :=

 (enI[1]
)T

...
(enI[L]

)T

 ∈ Rn×n, enI[l]
∈ Rn×|I[l]|. (20)

Then, the aggregated model of (A, b) associated with P is
denoted by (PAPT, P b), and its transfer function is defined
by

ĝ(s) := PT(sIL − PAPT)−1Pb. (21)

Fine

Coarse

Bidirectional Network

Aggregated Model

Fig. 6. Illustration of Clustering-based State Aggregation.

In this definition, PAPT is symmetric, and the aggregation
matrix P clearly satisfies PPT = IL. In the rest of this section,
we denote the index with respect to each cluster I[l] by the
subscript of [l]. For this clustering-based state aggregation, we
give the following intuitive explanation. There are L clusters
labeled by l ∈ L. Each node of the original network belongs
to exactly one of the clusters, or, in other words, the state
variable of the lth cluster is represented by

x[l] := (enI[l]
)Tx ∈ R|I[l]|,

where I[l] satisfies I[l] ∩ I[l′] = ∅ for l ̸= l′ and (18).
Under this definition, the linear transformation x̂ = Px by
the aggregation matrix (19) implies that

x̂[l] = p[l]x[l], l ∈ L,

where x̂[l] ∈ R is a scalar. This transformation implies that
the original state x[l] ∈ R|I[l]| is aggregated into x̂[l] ∈ R
by weighting p[l] ∈ R1×|I[l]|. Then the clustering-based
state aggregation problem considered herein is formulated as
follows:

Problem 2: Consider a bidirectional network (A, b), and
define g in (7). Given a constant ϵ ≥ 0, find a cluster set
{I[l]}l∈L and an aggregation matrix P in (19) compatible with
{I[l]}l∈L such that

∥g(s)− ĝ(s)∥H∞ ≤ ϵ, (22)

where ĝ is defined as in (21).
In traditional model reduction methods, each state of the

reduced model is usually obtained as a linear combination of
all states of the original system; in other words, the projection
matrix has no specific structure. This clearly contrasts with
our problem formulation, where the aggregation matrix (19)
is block-diagonally structured. Consequently, as shown in
Fig. 6, where each cluster of the original bidirectional network
is depicted by the circle of the chain-line, the interconnec-
tion topology (spatial distribution) among clusters is retained
through reduction.

Our approach to solving Problem 2 is as follows. First,
in Section IV-B, we define an exactly reducible cluster for
the state aggregation. This is done based on a notion of
cluster uncontrollability, which implies that the states of nodes
in a cluster have the same trajectory for any input signal
under the same initial condition. Then, we will show that the
cluster reducibility is characterized by linear dependence of
row vectors of Φ that is introduced in (15); in other words, it
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follows that the cluster reducibility of I[l] is equivalent to the
rank deficiency of (enI[l]

)TΦ. Next, in Section IV-C, we relax
the exact notion of cluster reducibility to a weak notion, which
is defined as near rank deficiency of (enI[l]

)TΦ. Then, it will
be shown that the distance to the rank deficiency of (enI[l]

)TΦ
has a linear relation to the approximation error that is caused
by the aggregation of weakly reducible clusters. Finally, based
on this error analysis, a specific construction algorithm of the
aggregation matrix, i.e., an algorithm to determine a cluster
set {I[l]}l∈L and the corresponding aggregation weights p[l],
will be provided in Section IV-D.

B. Exact Cluster Reducibility

First, let us consider how reducibility of a cluster should
be formulated for the aggregation. For example, consider the
cluster of I[1] = {1, 2, 3}. If the state variables xi for i ∈ I[1]
in this cluster have the same behavior, namely

x1(t) = x2(t) = x3(t)

holds for all t ≥ 0, under any input signal and x(0) = 0, they
should be aggregated for reduction. This case, in fact, means
that only its one-dimensional subspace

{(x1, x2, x3) : x1 = x2 = x3}

is controllable. In other words, the transfer functions from u
to x1−x2 and x2−x3 are inevitably zero, or equivalently the
transfer function of the cluster I[1] should be in the form of

(enI[1]
)Tg(s) =

 1
1
1

 g[1](s)

for a scalar rational function g[1]. This observation is general-
ized as follows:

Definition 4: Consider a bidirectional network (A, b), and
define g in (7). Under the notation in Definition 3, a cluster I[l]
is said to be reducible if there exist a scalar rational function
g[l] and a vector η[l] ∈ R|I[l]| such that

(enI[l]
)Tg(s) = η[l]g[l](s). (23)

In order to characterize (23) in an algebraic manner, we use
the matrix Φ ∈ Rn×n that is introduced in Theorem 3:

Theorem 4: Given a bidirectional network (A, b), let (Â, b̂)
be its positive tridiagonal realization and,H ∈ Rn×n be its
transformation matrix. Define Φ in (15). Then, a cluster I[l] is
reducible if and only if there exist a row vector ϕ[l] ∈ R1×n

and a vector η[l] ∈ R|I[l]| such that

(enI[l]
)TΦ = η[l]ϕ[l]. (24)

In addition, if (24) holds, then η[l] is a multiple of

−(enI[l]
)TA−1b.

Moreover, if all clusters I[l] are reducible, then the aggregated
model (PAPT, P b) in Definition 3 with p[l] = ηT[l]/∥η[l]∥ is
stable and it satisfies

g(s) = ĝ(s), (25)

where ĝ is defined as in (21).

Proof: [Proof of (23) ⇔ (24)] Suppose that (23) holds.
Consider i∗ in (6) representing the dimension of the control-
lable sub-space of (Â, b̂), and define

J := {1, . . . , i∗}, J := {i∗ + 1, . . . , n}.

Since X̂k(s) ≡ 0 holds for k ∈ J , where X̂k is the kth entry
of X̂ in (13), we have

X̂(s) = enJ (enJ )TX̂(s). (26)

In addition, note that

g(s) = H(sIn − Â)−1b̂ = HX̂(s)

holds by definition. Then, from this fact and (26), we see that
(23) is equivalent to

(enI[l]
)THenJ (enJ )TX̂(s) = η[l]g[l](s). (27)

It should be emphasized that the functions X̂k for k ∈ J
are linearly independent because any two of them do not
have the same relative degree, i.e., the difference of degrees
between the denominator and the numerator polynomials, due
to the serially cascaded structure of the positive tridiagonal
realization. This fact implies that there exists a row vector
h[l] ∈ R1×i∗ such that

(enI[l]
)THenJ = η[l]h[l], (28)

which means that the rank of (enI[l]
)THenJ ∈ R|I[l]|×i∗ is one.

Note that

diag(−Â−1b̂) = enJ (enJ )Tdiag(−Â−1b̂)

follows from (26) and X̂(0) = −Â−1b̂. Multiplying (28) by
(enJ )Tdiag(−Â−1b̂) from the right side, we have

(enI[l]
)THenJ (enJ )Tdiag(−Â−1b̂)=η[l]h[l](e

n
J )Tdiag(−Â−1b̂)

where the left-hand side is equal to (enI[l]
)TΦ. This implies

that
ϕ[l] := h[l](e

n
J )Tdiag(−Â−1b̂) ∈ R1×n

satisfies (24). Hence, (23) ⇒ (24) is proven. For the proof of
(24) ⇒ (23), see the proof of Theorem 5 because this is a
special case of Theorem 5. In addition, substituting s = 0 to
(23), which is equivalent to (24), proves that η[l] is a multiple
of −(enI[l]

)TA−1b.
[Proof of (25)] Consider a matrix q[l] ∈ R(|I[l]|−1)×|I[l]|

such that [pT[l], q
T
[l]]

T ∈ R|I[l]|×|I[l]| is unitary, and define

Q := Diag(q[1], . . . , q[L])Π ∈ R(n−L)×n, (29)

which is an orthogonal complement of P in (19). Here, we
allow empty q[l] if |I[l]| = 1. Considering the similarity
transformation for the error system g − ĝ, we have

V AeV
−1 =

[
PAPT PAQTQ

0 A

]
, V be =

[
0
b

]
,

ceV
−1 =

[
PT QTQ

]
(30)
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where

Ae :=Diag(A,PAPT), be :=

[
b
−Pb

]
, ce :=

[
In PT

]
.

and
V =

[
P IL
In 0

]
, V −1 =

[
0 In
IL −P

]
.

The block structure of (30) implies that the error system is in
the cascaded form of

g(s)− ĝ(s) = Ξ(s)QTQg(s) (31)

where

Ξ(s) := PT(sIL − PAPT)−1PA+ In.

The reducibility of all clusters and p[l] = ηT[l]/∥η[l]∥ imply that
Qg = 0. Hence, (25) follows.

Theorem 4 implies that the cluster reducibility (23) is
characterized by linear dependence among the row vectors of
Φ. More specifically, the distance between the ith and jth row
vectors of Φ represents the closeness between the behavior
of xi and xj . Furthermore, from the fact that η[l] must be a
multiple of −(enI[l]

)TA−1b if I[l] is reducible, we see that,
to achieve the exact state aggregation (25), we are required
to take the aggregation weights p[l] that are compatible with
the DC gain g(0) = −A−1b and a cluster set {I[l]}l∈L
satisfying the reducibility. However, (23) or, equivalently, (24)
is restrictive in general. This is because it represents a kind of
local uncontrollability such that the controllable subspace of
x[l] = (enI[l]

)Tx is one-dimensional.

Example: To demonstrate Theorem 4, let us consider a
simple bidirectional network (A, b) given by

A =


−7 1 1 2 2
1 −1
1 −1
2 −2
2 −2

 , b =


1
0
0
0
0


whose interconnection topology is depicted in the left side of
Fig. 7. In this figure, we use the same symbols as those in
Fig. 1. The symmetric topology with respect to permutation
suggests that the trajectories of x2 and x3, as well as those of
x4 and x5 are identical if x2(0) = x3(0) and x4(0) = x5(0).
This is equivalent to saying that g2 = g3 and g4 = g5, where
gi denotes the ith entry of the transfer function g in (7). In
terms of Definition 4, for the clusters

I[1] = {1}, I[2] = {2, 3}, I[3] = {4, 5},
which are depicted by the circles of the chain line in the left
side of Fig. 7, there exists a scalar function g[l] for each l ∈
{1, 2, 3} such that (23) holds, where both η[2] and η[3] must
be a multiple of [1, 1]T.

On the other hand, by the positive tridiagonalization of
(A, b), we obtain (Â, b̂) with its transformation matrix H ∈
R5×5 as

Â =


−7.00 3.16
3.16 −1.80 0.40

0.40 −1.20 0
0 −1.50 0.50

0.50 −1.50

, b̂ =


1
0
0
0
0



Fig. 7. Depiction of Interconnected Topologies.

and

H =


1 0 0 0 0
0 0.316 0.63 −0.50 −0.50
0 0.316 0.63 −0.50 −0.50
0 0.63 −0.32 0.50 −0.50
0 0.63 −0.32 0.50 −0.50

 .

Note that the third off-diagonal entry of Â is zero. This implies
that the dimension of the controllable subspace of (A, b) is
i∗ = 3 in (6). In addition, the submatrix He51:3 ∈ R5×3, i.e.,
the first three column vectors of H , is uniquely determined as
shown in Theorem 1. Using these matrices, we construct the
index matrix Φ in (15) as

Φ = Hdiag(−Â−1b̂) =


1 0 0 0 0
0 0.60 0.40 0 0
0 0.60 0.40 0 0
0 1.20 −0.20 0 0
0 1.20 −0.20 0 0


where the second and third row vectors, and the fourth and fifth
row vectors are identical, respectively. This implies that there
exists a row vector ϕ[l] ∈ R1×5 for each l ∈ {1, 2, 3} such
that (24) holds, where both η[2] and η[3] must be a multiple of
[1, 1]T. Since the DC gain of (A, b) is −A−1b = [1, . . . , 1]T,
each η[l] coincides with a multiple of −(enI[l]

)TA−1b as shown
in Theorem 4.

For this cluster set {I[l]}l∈{1,2,3} and the corresponding
aggregation weights p[l] = ηT[l]/∥η[l]∥, we have the aggregation
matrix in (19) as

P =

 1 0 0 0 0

0 1/
√
2 1/

√
2 0 0

0 0 0 1/
√
2 1/

√
2

 .

Consequently, we obtain the aggregated model

PAPT =

 −7
√
2 2
√
2√

2 −1 0

2
√
2 0 −2

 , P b =

 1
0
0

 ,

which satisfies g = ĝ. The interconnection topology of this
aggregated model is depicted in the right side of Fig. 7.

Remark 3: The exact state aggregation in Theorem 4 co-
incides with the elimination of a kind of locally uncontrol-
lable subspace of (A, b). It should be emphasized that this
aggregation is different from the standard elimination of the
uncontrollable subspace in the sense that the aggregation
matrix P in (19) is block-diagonally structured.
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C. Cluster Reducibility Relaxation

In what follows, aiming at significant order reduction, we
relax (23) through its equivalent representation of (24).

Definition 5: Given a bidirectional network (A, b), let
(Â, b̂) be its positive tridiagonal realization, and H ∈ Rn×n be
its transformation matrix. Define Φ in (15), and let η[l] ∈ R|I[l]|

be a vector. A cluster I[l] is said to be θ-reducible with respect
to η[l] if there exists a row vector ϕ[l] ∈ R1×n such that∥∥∥(enI[l]

)TΦ− η[l]ϕ[l]

∥∥∥
l∞
≤ θ, θ ≥ 0. (32)

In Definition 5, the constant θ represents the degree of
cluster reducibility. The vector η[l] determines the aggregation
weight for a cluster I[l]. Note that η[l] can be chosen arbitrary
as long as (32) is satisfied. This degree of freedom can
be used to give some additional property to the aggregated
model (see Section IV-D for details). Next, we show that the
approximation error caused by the state aggregation is easily
evaluated when all clusters are θ-reducible. To this end, we
first give the following lemma:

Lemma 3: Given a bidirectional network (A, b), let (Â, b̂)
be its positive tridiagonal realization, and H ∈ Rn×n be its
transformation matrix. Define Φ in (15). Then

∥Cg(s)∥H∞ ≤
√
p∥CΦ∥l∞

holds for any output mapping C ∈ Rp×n.

We can prove this lemma in a manner similar to Theorem 3.
Now we are in a position to present the main theorem of this
section.

Theorem 5: Given a bidirectional network (A, b), let (Â, b̂)
be its positive tridiagonal realization, and H ∈ Rn×n be its
transformation matrix. Consider the state aggregation with
P in Definition 3. If all clusters I[l] are θ-reducible with
respect to each η[l], then the aggregated model (PAPT, P b)
in Definition 3 with p[l] = ηT[l]/∥η[l]∥ is stable and it satisfies

∥g(s)− ĝ(s)∥H∞ ≤
√
α∥(PAPT)−1PA∥θ, (33)

where ĝ is defined as in (21) and α :=
∑L

l=1|I[l]|(|I[l]| − 1).

Proof: The stability of ĝ follows from the negative
definiteness of A. Under the notation in the proof of Theorem 4

∥g(s)− ĝ(s)∥H∞ ≤ ∥Ξ(s)∥H∞∥QTQg(s)∥H∞ (34)

follows from (31). First, let us prove that

∥Ξ(s)∥H∞ = ∥(PAPT)−1PA∥.

The inequality ∥Ξ∥H∞ < γ holds if and only if γ > ∥In∥ = 1
and the Hamiltonian γ2(γ2 − 1)−1J(γ) of Ξ where

J(γ) :=

[
PAPT −γ−1PAATPT

γ−1IL −PATPT

]
has no eigenvalue on the imaginary axis (see Proposition 5.4
in [5]). Note that this J is identical to the Hamiltonian of

Ξ̂(s) := (sIL − PAPT)−1PA. (35)

Thus, ∥Ξ∥H∞ < γ is equivalent to γ > 1 and ∥Ξ̂∥H∞ < γ.
On the other hand, by In = PTP +QTQ and PPT = IL, we
obtain

∥Ξ̂(0)∥ = ∥(PAPT)−1PA(PTP +QTQ)∥

= ∥P + Z∥ = λ
1
2
max(IL + ZZT) > 1,

where PZT = 0 holds for Z := (PAPT)−1PAQTQ. Hence,
∥Ξ∥H∞ < γ holds if and only if ∥Ξ̂∥H∞ < γ holds for all
γ ≥ 0. Thus, we have ∥Ξ∥H∞ = ∥Ξ̂∥H∞ . Finally, applying
Lemma 4 in Appendix B to Ξ̂ proves

∥Ξ(s)∥H∞ = ∥Ξ̂(0)∥ = ∥(PAPT)−1PA∥. (36)

Next, we evaluate ∥QTQg∥H∞ . From

∥QTQg(s)∥H∞ = sup
ω∈R

λ
1
2
max(g

T(−jω)QTQQTQg(jω))

= ∥Qg(s)∥H∞ ,

where the second equality comes from QQT = In−L, it
follows that

∥QTQg(s)∥H∞ =

∥∥∥∥∥∥∥
 q[1](e

n
I[1]

)Tg(s)
...

q[L](e
n
I[L]

)Tg(s)


∥∥∥∥∥∥∥
H∞

≤
√∑L

l=1 ∥q[l](enI[l]
)Tg(s)∥2H∞

.

Using Lemma 3 with C = q[l](e
n
I[l]

)T ∈ R(|I[l]|−1)×n, we have

∥q[l](enI[l]
)Tg(s)∥H∞ ≤

√
|I[l]| − 1∥q[l](enI[l]

)TΦ∥l∞ .

By the assumption of θ-reducibility, it is also obtained that
∥∆[l]∥l∞ ≤ θ, where ∆[l] := (enI[l]

)TΦ − η[l]ϕ[l]. From the
fact that [pT[l], q

T
[l]]

T is unitary and p[l] = ηT[l]/∥η[l]∥, it follows
that q[l](enI[l]

)TΦ = q[l]∆[l]. Hence, we have

∥q[l](enI[l]
)TΦ∥l∞ ≤ ∥q[l]∥l∞∥∆[l]∥l∞

≤
√
|I[l]| ∥q[l]∥θ ≤

√
|I[l]| θ

where the second inequality comes from ∥M∥l∞ ≤
√
m∥M∥

for any M ∈ Rn×m and the third from ∥q[l]∥ = 1. Finally, we
have

∥QTQg(s)∥H∞ ≤
√∑L

l=1 |I[l]|
(
|I[l]| − 1

)
θ (37)

that proves the claim.
Theorem 5 shows a linear relation between the aggregation

error ∥g − ĝ∥H∞ and the parameter θ that represents the
degree of cluster reducibility. Thus, we can use θ as a design
criterion to assign the coarseness of the resultant aggregated
model. However, the error evaluation based on (33), especially
in a large-scale setting, may become conservative. Therefore,
using the Krylov-based model reduction in Section III, we
will provide a more practical error evaluation in the follow-
ing subsection, even though (33) gives a reasonable cluster
determination strategy.

Remark 4: The error bound in (33) is not a priori com-
putable because it depends on P . On the other hand, admitting
more conservative evaluation, we can derive an a priori error
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bound. More specifically, we can verify that α is bounded by
n(n− 1) and ∥(PAPT)−1PA∥ is bounded by

∥(PAPT)−1PA∥ ≤ − λmax(A) + λmin(A)

2
√

λmax(A)λmin(A)
. (38)

The inequality (38) is proven as follows. For Ξ̂ in (35) and a
given γ > 0, ∥(PAPT)−1PA∥ = ∥Ξ̂∥H∞ < γ holds if there
exists a positive definite matrix X ∈ RL×L such that

XPAPT + PATPTX + γ−1(XPAATPTX + IL) (39)

is negative definite. This condition can be derived based on
the standard bounded real lemma. We suppose that the explicit
solution is X = aIL, where a > 0 will be determined later.
Note that (39) with X = aIL is equal to

P
{
2aA+ γ−1(a2A2 + In)

}
PT.

From eigenvalue decomposition, it follows that 2aA +
γ−1(a2A2 + In) is negative definite if

f(aλ(A)) < γ, f(x) :=
x+ x−1

2

holds for all eigenvalues λ(A) of A. Since f(x) is convex for
x ∈ (−∞, 0), the maximum of f(aλ(A)) is attained at either
aλmin(A) or aλmax(A). Thus, ∥Ξ̂∥H∞ < γ follows for

γ > max{f(aλmin(A)), f(aλmax(A))}.

From the fact that the minimum of the right-hand side is
attained by a = (λmax(A)λmin(A))

−1/2, the inequality (38)
follows. It should be noted that λmin(A) and λmax(A) can
be efficiently calculated by using existing methods, e.g., the
power method (see Chapter 10 in [5]).

D. Clustering-based State Aggregation Procedure

In this subsection, based on the error analysis in Sec-
tion IV-C, we present a procedure of clustering-based state
aggregation. This subsection is divided into the following three
parts. In Section IV-D1), we show three methods for deter-
mining η[l] in Definition 5, to give some additional property
to the aggregated model. In Section IV-D2), we propose a
greedy algorithm to construct a cluster set {I[l]}l∈L satisfying
θ-reducibility, which does not depend on the specific choice
of η[l]. In Section IV-D3), we derive a tighter error bound,
which is efficient especially for large-scale systems. Finally,
we establish a procedure of clustering-based state aggregation.

1) A Priori Form of Aggregation Weights: Recall that,
according to Theorem 5, the aggregation weights are given
by p[l] = ηT[l]/∥η[l]∥. Without loss of generality, we can write
η[l] as

η[l] = (enI[l]
)Tη (40)

using a vector η ∈ Rn. Here, we propose three methods for a
priori determination of η to give some additional property to
the aggregated model. The first one is η = −A−1b. This η is
reasonable in the sense that (32) is equivalent to (24) if θ = 0.
This is proven by the fact that, as shown in Theorem 4, η[l] nec-
essarily coincides with a multiple of −(enI[l]

)TA−1b if a cluster
I[l] is exactly reducible. In addition, the aggregation weight

Input: θ ≥ 0, η ∈ Rn, and Φ ∈ Rn×n

Output: A set {I[l]}l∈L of θ-reducible clusters
1: L← {}, {I[l]}l∈L ← {}
2: while {I[l]}l∈L ̸= {1, . . . , n} do
3: Choose j ∈ {1, . . . , n}\{I[l]}l∈L
4: L← {L, |L|+ 1}, I[|L|] ← {j}
5: for i ∈ {1, . . . , n}\{I[l]}l∈L do
6: if i and j satisfy (41) then
7: I[|L|] ← {I[|L|], i}
8: end if
9: end for

10: end while

Fig. 8. Algorithm to Construct Set of θ-reducible Clusters.

p[l] assigned by this η is sufficient to guarantee the exact
preservation of the steady-state characteristic, i.e., g(0) = ĝ(0)
holds for any {I[l]}l∈L. This is proven by Qg(0) = 0 in (31).

Furthermore, admitting possibly more conservative order
reduction, we may obtain some properties by choosing η
different from −A−1b as follows.

• η = [1, . . . , 1]T: each state of the aggregated model
represents the averaged state of the original bidirectional
network.

• η such that Aη = λmax(A)η: the dominant decay rate is
preserved, i.e., it follows that λmax(A) = λmax(PAPT).

2) Construction of Cluster Set: We propose a greedy
algorithm to construct a cluster set {I[l]}l∈L satisfying θ-
reducibility, on the premise that θ ≥ 0 and η ∈ Rn are
given and Φ in (15) is obtained. Assume that a set of clusters
{I[1], . . . , I[l]} are already made and let

J := {1, . . . , n}\{I[1], . . . , I[l]}.

When we make a new cluster I[l+1], we first choose an index
j ∈ J , and then look for indices i ∈ J satisfying∥∥ϕi − ηiη

−1
j ϕj

∥∥
l∞
≤ θ (41)

where ϕi ∈ R1×n denotes the ith row vector of Φ and ηi ∈ R
denotes the ith entry of η. Since (41) corresponds to taking
ϕ[l] = η−1

j ϕj for (32), it is straightforward to verify that this
newly constructed cluster is θ-reducible. This choice of ϕ[l] is
reasonable because, in (41), the scale of ηiη

−1
j ϕj is adjusted

to ϕi accordingly to the aggregation weight, even though there
are the other choices of ϕ[l] to attain θ-reducibility. Figure 8
shows an algorithm for creating clusters based on (41), which
requires at most n(n − 1)/2 multiplications (vector norm
calculations).

3) Error Evaluation for Large-Scale Setting: The conser-
vativeness of the error bound in Theorem 5 depends on the
estimation accuracy of ∥QTQg∥H∞ = ∥Qg∥H∞ in (37). Here,
because of no explicit use of the information on Q, (37)
may give a conservative error bound, especially for large-
scale systems. In this sense, Theorem 5 does not necessarily
give a satisfactory error bound, even though it gives us a
reasonable cluster determination strategy. To compensate for
this weakness, we use (33) along with a tighter error bound
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shown in the following theorem. In this theorem, we utilize
the Krylov-based model reduction in Section III to efficiently
estimate ∥Qg∥H∞ within a small error precision δ.

Theorem 6: Under the notation in Theorems 3 and 5, if k
satisfies √

n ∥Φ− Φ̂(k)∥l∞ ≤ δ, (42)

then the aggregated model (PAPT, P b) associated with P
satisfies

∥g(s)− ĝ(s)∥H∞ ≤ ∥(PAPT)−1PA∥(∥Qĝ(k)(s)∥H∞ + δ),
(43)

where ĝ(k) is defined as in (9) and Q is an orthogonal
complement of P such that [PT, QT]T is unitary.

Proof: From (34) and (36), we have

∥g(s)− ĝ(s)∥H∞ ≤ ∥(PAPT)−1PA∥∥Qg(s)∥H∞ .

If (42) holds, then ∥g−ĝ(k)∥H∞ ≤ δ follows from Theorem 3.
Hence, from ∥Q∥ = 1 and

∥Qg(s)∥H∞ ≤ ∥Qĝ(k)(s)∥H∞ + ∥Q∥∥g(s)− ĝ(k)(s)∥H∞

≤ ∥Qĝ(k)(s)∥H∞ + δ, (44)

(43) follows.
Theorem 6 provides an alternative error bound, practically

tight as long as δ ≥ 0 is sufficiently small. It should be
remarked that once a desirable approximant ĝ(k) is obtained,
the error bound (43) can be calculated efficiently because
it consists only of the lower-dimensional components, i.e.,
(PAPT)−1PA ∈ RL×n and the k-dimensional system Qĝ(k).
Moreover, Q in (29) can be easily constructed.

To take advantage of error bounds in (33) and (43), we use
both of them simultaneously, that is, we use

F (θ) := min{
√
α∥(PAPT)−1PA∥θ, (45)
∥(PAPT)−1PA∥(∥Qĝ(k)(s)∥H∞ + δ)},

i.e., the minimum of the right-hand sides of (33) and (43). This
combined error bound is more reasonable because the latter
one provides tighter evaluation for middle and large θ. This is
simply confirmed by the fact the latter is bounded owing to
∥Q∥ = 1 for any θ.

Based on the above arguments, a solution to Problem 2
with a given admissible error ϵ is provided by the following
procedure:

Procedure of Clustering-based State Aggregation:
(a) Prescribe a nonnegative constant δ.
(b) Calculate the positive tridiagonal realization (Â, b̂) in (4)

with its transformation matrix H .
(c) Find the minimum k satisfying (42), and then construct

an approximant ĝ(k) in (9).
(d) Set a vector η ∈ Rn in (40).
(e) For a fixed θ, construct a cluster set {I[l]}l∈L satisfying

θ-reducibility by applying the algorithm in Fig. 8, and
define the corresponding aggregation weights p[l] =
ηT[l]/∥η[l]∥, which determine P and Q in (19) and (29),
respectively.

(f) If F (θ) in (45) is not less than ϵ, then return to (e) by
setting a smaller θ.
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The major computational effort is summarized as follows:
(b) the positive tridiagonalization requires the complexity of
O(n) or at most (2/3)n3 [37], [39]; (c) the construction of
Φ in (15), which coincides with solving linear equations for
tridiagonal systems, requires the complexity of log2 n [42];
and (e) the construction of a cluster set requires at most
n(n − 1)/2 multiplications. Finally, even though the explicit
computational complexity of (f) is not available because matrix
and system norms are usually calculated by convergence
processes, it can be effectively implemented owing to the
computational load reduction based on Theorem 6.

Remark 5: The value of δ in the above procedure corre-
sponds to the estimation accuracy of ∥Qg∥H∞ , as shown in
(44). Generally speaking, δ should be much smaller than a
given ϵ so that the error bound (43) makes sense. However,
setting an extremely small δ possibly loses the advantage
of computational load reduction. In a practical sense, it is
sufficient that δ is less than ϵ by several orders of magnitude.

E. Large-Scale Example: Clustering-based State Aggregation
of a Complex Network System

We applied the proposed clustering-based state aggregation
to the 3000-dimensional system dealt with in Section III-B, to
solve Problem 2 with ϵ = 0.27. This corresponds to an approx-
imately 0.5% relative error because ∥g∥H∞ = ∥g(0)∥ = 54.8,
where the first equation follows from Lemma 4 in Appendix B.

Let us implement the procedures (a)–(f) proposed in Sec-
tion IV-D. Note that we obtained k = 110-dimensional
approximant ĝ(k), whose error is bounded by δ = 1.0×10−4,
in Section III-B. This means that the procedures (a)–(c) have
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Fig. 11. Clustered Topology of the Holme-Kim Model (276 Clusters).

already been terminated. Thus, what remains to be imple-
mented are the procedures (e)–(f). We perform (e)–(f) with
the initial value of θ = 5.0, and then iterate them with smaller
values of θ. Against each value of θ, Figs. 9 and 10 depict the
resultant order of aggregated models, i.e., the resultant number
of clusters, and the resultant error bound, i.e., the value of
F (θ) in (45), respectively. These figures show that the order
of the aggregated model gradually increases, and the error
bound appropriately decreases as θ decreases. Therefore, this
result confirms that θ successfully captures the coarseness of
the aggregated models to be constructed.

When θ = 1.82, we obtain a 276-dimensional aggregated
model shown in Fig. 11, where we use the same symbols of
nodes (aggregated clusters) and edges as those in Fig. 1, and
we omit the self-loops for simplicity. Its approximation error
is bounded by 0.16, which is less than the prescribed ϵ = 0.27.
Comparing Fig. 11 with Fig. 3, we see that the interconnection
topology of the aggregated model is much simpler than the
original one. This example shows that the proposed method
successfully extracts meaningful inter-cluster connections in
the sense of input-to-state mapping approximations.

This numerical experiment is performed under the same
setup in Section III-B. As for the computation time of one
implementation of (e)–(f), it takes 23 [sec] to find an aggrega-
tion matrix P , which includes the construction of the cluster
set {I[l]}l∈L, and 427 [sec] to evaluate its aggregation error.
Finally, for comparison, the exact error ∥g− ĝ∥H∞ is directly
calculated. It takes 38927 [sec] for the calculation, and the
resultant value is 0.070. Therefore, this result shows that the
computational load reduction based on Theorem 6 is effective.

V. CONCLUSION

In this paper, two kinds of model reduction methods for
large-scale bidirectional networks are proposed. Both methods
fully exploit a network structure transformation implemented
as positive tridiagonalization. First, we proposed a Krylov-
based model reduction method with an H∞-error bound,
where the system, not necessarily positive, is transformed into
a positive system with a tridiagonal structure. The positivity
property is used in conjunction with the tridiagonal structure
to derive an error bound for input-to-state model reduction.
Next, we proposed a network clustering-based model reduc-
tion method, where the connection topology among clusters,

i.e., disjoint sets of nodes, is preserved. By introducing the
reducibility of cluster sets, which coincides with local un-
controllability of the state-space, the method aggregates the
states of each reducible cluster into lower-dimensional ones.
The cluster reducibility can be efficiently characterized by
means of positive tridiagonalization, and the state discrepancy
between the original system and the reduced-order model
is evaluated in terms of the H∞-norm. The efficiency of
both methods is verified through some numerical examples
including application to a large-scale complex network system.

It should be emphasized that since positive tridiagonaliza-
tion does not require computationally expensive operations, the
proposed methods are applicable to even large-scale complex
network systems. Obviously, all of the results stated in this
paper involve a dual notion by considering the state-to-output
mapping. Extension to directed networks is currently under
investigation.

APPENDIX A
EXISTENCE AND UNIQUENESS OF POSITIVE

TRIDIAGONALIZATION

The existence of positive tridiagonalization can be easily
proven through Householder transformation [37]. For refer-
ence, we show an algorithm for the positive tridiagonalization.
For arbitrary x ∈ Rn and y ∈ Rn such that ∥x∥ = ∥y∥ and
x ̸= y, define the symmetric unitary matrix

H = In −
2(x− y)(x− y)T

∥x− y∥2
∈ Rn×n;

then the product of H , which is known as the Householder
transformation, satisfies y = Hx. In what follows, we prove
the existence of positive tridiagonalization of every bidirec-
tional network (A, b) by induction. First, there exists the
Householder transformation b1 = H0b such that b1 = ∥b∥en1 .
Since H0 ∈ Rn×n is symmetric and unitary, the similarity
transformation A1 := H0AH0 ∈ Rn×n preserves the symme-
try. Next, let us assume that a symmetric matrix Ak ∈ Rn×n

and a vector bk ∈ Rn are in the form of

Ak =

 Â(k) 0(k−1)×(n−k)

xT

0(n−k)×(k−1) x ∗

, bk =


β0

0
...
0


where β0 ≥ 0, x ∈ Rn−k, and Â(k) ∈ Rk×k being a
symmetric tridiagonal matrix with nonnegative off-diagonal
entries. Considering the Householder transformation x̃ = H̃kx
such that x̃ := ∥x∥en−k

1 , we have

Ak+1 := HkAkHk

=

 Â(k) 0(k−1)×(n−k)

x̃T

0(n−k)×(k−1) x̃ ∗


and bk+1 := Hkbk = bk where Hk := Diag(Ik, H̃k). Note
that the (k + 1)-dimensional principal submatrix of Ak+1 is
a tridiagonal matrix having nonnegative off-diagonal entries.
Thus, repeating this argument ensures the existence of the
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transformation matrix H := H0H1 · · ·Hn for the positive
tridiagonalization.

Next, we prove the uniqueness stated in Theorem 1. Suppose
that both (Â, b̂) and (TÂTT, T b̂) are positive tridiagonal
realizations for a unitary matrix T . To prove the uniqueness,
it is sufficient to show that T necessarily has the form of
T = Diag(Ii, ∗). The fact that T b̂ is a multiple of en1 and T
is unitary leads to

T =

 1 0 0
0 t11 t1∗
0 t∗1 T

 (46)

where t11 ∈ R, tT1∗, t∗1 ∈ Rn−2 and T ∈ R(n−2)×(n−2).
Partitioning Â according to (46), we have

Â =

 α1 β1 0

β1 α2 β
T

0 β A

, T ÂTT =

 α1 β1t11 β1t
T
∗1

t11β1 α ∗
t∗1β1 ∗ ∗


where A ∈ R(n−2)×(n−2), β ∈ Rn−2 and

α = t211α2 + t1∗βt11 + t11β
T
tT1∗ + t1∗At

T
1∗.

Since TÂTT is tridiagonal and β1 ̸= 0, we have t∗1 = 0. In
addition

TTT =

 1 0 0

0 t211 + t1∗t
T
1∗ t1∗T

T

0 TtT1∗ TT
T


is In and T is nonsingular. Thus, t1∗ = 0 and t211 = 1.
Moreover, t11 = 1 follows from t11β1 > 0. Repeating this
argument for βi ̸= 0 completes the proof.

APPENDIX B
Lemma 4: Any stable A = AT ∈ Rn×n and B ∈ Rn×m

satisfy ∥(sIn −A)−1B∥H∞ = ∥A−1B∥.
Proof: Denote f(s) := (sIn − A)−1B. By definition,

∥f(s)∥H∞ ≥ ∥f(0)∥ holds. To prove ∥f(s)∥H∞ ≤ ∥f(0)∥,
let γ be an arbitrary number larger than ∥f(0)∥. It suffices to
show ∥f(s)∥H∞ < γ or, equivalently,

J(γ) :=

[
A −γ−1BBT

γ−1In −AT

]
has no eigenvalue on the imaginary axis. By the symmetry of
A, we have

J2(γ) =

[
A2 − γ−2BBT ∗

0 A2 − γ−2BBT

]
.

Note that the block-diagonal entry A(In− γ−2f(0)fT(0))AT

is symmetric and positive definite owing to γ > ∥f(0)∥.
Therefore, all eigenvalues of J2 are positive real. This directly
indicates that all eigenvalues of J are nonzero real. This
completes the proof.
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