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Abstract

We derive a mathematical model for an electromagnet inside a molding machine, and propose a novel loop-shaping method of
the proportional-integral (PI) controller design for the system based on the generalized KYP (GKYP) lemma. The behavior of the
molding machine is difficult to capture by using finite-dimensional models owing to eddy currents spatially distributed through-
out the electromagnet. To analyze fundamental properties of the system both theoretically and experimentally, we first derive a
mathematical model of the machine in terms of a partial differential equation (PDE). An analysis using the PDE model shows
that a low-dimensional approximation performed by standard spatial discretization results in a spillover effect, which makes the
behavior of the closed-loop system oscillatory. Then, to develop an easily tunable and implementable control system, we propose
a novel loop-shaping method for PI control on the basis of the GKYP lemma. In this control system design, we use multiple low-
dimensional models, which work simultaneously in specified finite frequency ranges. The proposed method successfully suppresses
the spillover effect despite the use of low-dimensional approximants. Finally, we show the efficiency of the proposed control design
method through numerical and experimental verification and discuss a performance limitation of the PI control.

Keywords: Industrial applications of optimal control, Modeling for control optimization, Infinite-dimensional systems,
Generalized KYP lemma, Electromagnet.

1. Introduction

In recent molding processes, molding machines driven by hy-
draulic power have been gradually replaced with ones driven by
electric power to improve control performance as well as job
cycling time. Against this background, a novel molding ma-
chine driven by electromagnetic power has recently been de-
veloped in (Morita et al., 2009). The machine’s clear contrast
to ordinary ones is that the driving force generated by the elec-
tromagnets is directly transmitted to a mold without an ampli-
fier. This kind of direct mold drive has the potential to carry out
more precise molding fabrication than traditional machines.

To fully utilize the hardware improvement of the mold-
ing machine, we should also develop a control system that
can be implemented into practical industrial instruments. As
one traditional control method, the frequency response method
has remained eminent in industrial applications (DiStefano
et al., 1997; Friedland, 2012), and has helped control engi-
neers improve the performance of feedback control system
as well as understand how feedback control works. Along
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with the frequency response method, proportional-integral-
derivative (PID) based control is still the most commonly used
technique for current industrial applications (Astrom and Hag-
glund, 1995; O’Dwyer, 2009), although modern control theory
has made great progress in the past few decades; see (Brogan,
1990; Zhiqiang and Rhinehart, 2004) for an overview. This
gap between theory and practice could be caused by hesita-
tion among manufacturers to implement major refurbishment
of existing equipment. In industry, such refurbishment is time-
consuming and often requires considerable operator training
costs. In view of this, aiming at industrial application, we
should explicitly take into account that

• the control system to be designed can be implemented into
the existing environment, and

• the design specification (optimization criterion) is simply
adjustable by engineers and operators.

To comply with such industrial requirements, in this paper
we focus on designing a PI control system that is compati-
ble with practical equipment. A number of PI controller tun-
ing techniques are available for controller design (Astrom and
Hagglund, 1995; O’Dwyer, 2009). However, an experiment
shown in this paper suggests that standard tuning techniques,
such as the Ziegler-Nichols tuning rule (Astrom and Hagglund,
1995), do not work well for our electromagnetic molding ma-
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chine. This is because eddy currents, which are spatially dis-
tributed within the electromagnet, cause unexpected behavior of
the feedback control system. To properly handle these spatially
distributed eddy currents, the dynamics of the electromagnet
should be modeled as a distributed parameter system (Curtain
and Zwart, 1995; Crank, 1973; Deen, 1998); see Section 2 for
details.

For various kinds of distributed parameter systems, optimal
control problems have been addressed in much of the litera-
ture (e.g., Curtain and Zwart, 1995; Padhi and Ali, 2009; Li
and Christofides, 2008; Becker and Vexler, 2007; Calise et al.,
1990). However, since most of these controllers are infinite-
dimensional (or relatively high-dimensional), they are not eas-
ily implementable.

As another possible approach, model reduction-based con-
trol synthesis methods have also been developed; see (e.g., Li
and Qi, 2010; Zheng et al., 2002). However, it is well known
that a low-dimensional approximation of distributed parameter
systems often results in undesirable behavior in the feedback
control system owing to the negative influence of the unmod-
eled (ignored) dynamics. This phenomenon is called a spillover
effect (Balas, 1978; Lin, 1981; Bontsema and Curtain, 1988).

In contrast to these approaches, in this paper we develop a
novel PI control design method for an electromagnetic molding
machine. We first derive its system expression in terms of a
partial differential equation (PDE) according to the basic laws
of physics. Then we analyze the fundamental system proper-
ties both theoretically and experimentally. This system anal-
ysis shows that a low-dimensional approximation via standard
spatial discretization causes the aforementioned spillover effect
in the feedback control system. In view of this, we propose a
novel finite-frequency loop-shaping method based on the gen-
eralized KYP (GKYP) lemma (Iwasaki and Hara, 2005; Hara
et al., 2006). In the proposed method, we introduce multiple
low-dimensional models that work in specified finite frequency
ranges. It is experimentally demonstrated that the method suc-
cessfully suppresses the spillover effect despite using a low-
dimensional approximation. The effectiveness of the proposed
method is shown through numerical and experimental verifica-
tion, and a performance limit of the PI control is briefly dis-
cussed at the end of this paper.

This paper is organized as follows: In Section 2 we overview
the electromagnetic molding machine dealt with in this paper.
Next, in Section 3, we derive a PDE that expresses its system
behavior, and we analyze its fundamental system properties.
By using the PDE expression, we show that a low-dimensional
approximation performed by the ordinary spatial discretization
results in a spillover effect. In Section 4 we propose a novel
finite-frequency loop-shaping method for the PI control system
design, and in Section 5 we show the efficacy of the proposed
method through numerical and experimental verification. Fi-
nally, concluding remarks are provided in Section 6.

2. Overview of the Electromagnetic Molding Machine

In this section, we overview the electromagnetic molding
machine dealt with in this paper. The photograph of a pro-

Figure 1: Prototype System.
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Figure 2: Depiction of Electromagnet.

totype system is shown in Fig. 1. This system consists of an
electromagnet for generating a molding force, a center rod for
transmitting the generated force, and a clamping mechanism for
performing molding. The mold clamping mechanism includes a
load cell, for observing the molding force. Figure 2 depicts the
electromagnet placed inside the system, which is composed of
an electromagnet core, a suction plate and a coil. This electro-
magnet produces suction force at gaps between the electromag-
net core and the suction plate. The suction force is transmitted
to the mold inside the clamping mechanism through the center
rod.

To achieve fast and precise molding, it is desirable that the
force response settles in a short time without overshoot. Figure
3 shows a block diagram of our PI control equipment. In this
control system, a low-pass filter is embedded to reduce high-
frequency output noise. This filter can be regarded as part of
the plant dynamics; see Section 4.2 for its explicit characteris-
tics. The experimental results for a step response are shown in
Figure 4, where the value of the proportional gain is varied from
0.005 to 0.1, while the value of the integral gain is fixed at 0.01.
The figure shows that the response becomes more oscillatory
as we increase the proportional gain. It is well known that this
kind of the oscillatory behavior appears in traditional gain tun-
ing (e.g., Astrom and Hagglund, 1995; O’Dwyer, 2009). The
figure further shows that the response takes considerable time
to settle to its steady-state value (∼0.05 s). Such poor settling
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Figure 4: Step Response of the Electromagnetic Molding Machine.

time possibly spoils the reliability of the traditional parameter
tuning strategies, e.g., the Ziegler-Nichols tuning rule, because
they explicitly use a set of constants determined from the step
response, such as steady-state value and transient rate, to decide
the PI gain parameters. In view of this, we need to develop a
gain determination method to systematically improve the ma-
chine response.

3. Distributed Parameter Modelling and Fundamental
Analysis

In this section, to analyze system properties theoretically, we
derive a mathematical model of the electromagnet. In what fol-
lows, according to the basic laws of physics (Cheng, 1992), we
investigate a relation between the input current u in the coil and
the output suction force Fout generated by magnetic flux.

As shown in Fig. 5, where a cross section of the electromag-
net is depicted, the physics is supposed to be axisymmetric. Ac-
cording to the symmetry, we consider a micro region D along
the path of an eddy current ie at a radial position r. First, the
suction force Fout is given by

Fout(t) =
1

2µ0

∫ rmax

0
B2(t, r)2πrdr (1)

where µ0 denotes the magnetic permeability in vacuum, rmax
denotes the radius of the iron core, and B denotes the density
of magnetic flux. We consider (1) as an output equation with

Figure 5: Electromagnet Model.

respect to the state variable of B. Here, the magnetic flux is
given by

B(t, r) =
EM(t, r)

RM(r)2πrdr

where EM denotes the magnetomotive force induced by the cur-
rents u and ie, and RM denotes the magnetic resistance of the
iron core. The magnetic resistance is expressed as

RM(r) =
σ

2πr
, σ :=

(
L
µ0µs

+
d
µ0

)
where L denotes the length of the iron core, µs the relative mag-
netic permeability, and d the gap distance in the electromagnet.

Next, we derive an expression of the magnetomotive force
EM . A resistance RE of the iron core, which is proportional
to the circumferential length and inversely proportional to the
width of the path, is given by

RE(r) =
2πr
dr
ρ

where ρ denotes a material constant of the iron core. Thus the
eddy current ie inD is obtained as

ie(t, r) =
EE(t, r)
RE(r)

=
EE(t, r)
2πrρ

dr

where EE denotes the electromotive force induced by B. From
Faraday’s law of electromagnetic induction, EE is expressed by

EE(t, r) = −
∫ r

0
2πζ
∂B(t, ζ)
∂t

dζ.

Since EM is given by the sum of magnetomotive forces outside
D, we obtain

EM(t, r) =
dr

rmax
Ncu(t) − dr

ρ

∫ rmax

r

1
ζ′

∫ ζ′

0
ζ
∂B(t, ζ)
∂t

dζdζ′

where Nc denotes the number of coil turns. The above equations
lead to the state equation

B(t, r) =
Nc

σrmax
u(t) − 1

σρ

∫ rmax

r

1
ζ′

∫ ζ′

0
ζ
∂B(t, ζ)
∂t

dζdζ′. (2)
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Finally, differentiating both sides of (2) with respect to r and
linearizing (1) around an operating point (u, B, Fout) of the sys-
tem, we obtain the linearized state-space representation as

∂X(t, ξ)
∂t

= 2α
∂

∂ξ

(
ξ
∂X(t, ξ)
∂ξ

)
, ξ ∈ (0, 1)

X(t, ξ) =
β

α
u(t), ξ = 1

ξ
∂X(t, ξ)
∂ξ

= 0, ξ = 0

y(t) =
∫ 1

0
X(t, ξ)dξ

(3)

where

ξ :=
(

r
rmax

)2

, X(t, ξ) := B
(
t,

√
ξ
)
,

α :=
2σρ
r2

max
, β :=

2πρN2
c Fout

σµ0
.

The modelling error resulting from the linearization could be
significant if we run the machine far away from the operat-
ing point. In view of this, all experiments shown in the fol-
lowing are performed close to the operating point so that the
linearization is reasonable enough. We can see from (3) that
the system dynamics is essentially identical to that of spatially
one-dimensional thermal diffusion systems with diffusivity pro-
portional to the spatial variable (see, e.g., Crank, 1973; Deen,
1998; Carslaw and Jaeger, 1986, for an overview of diffusion
systems). Based on this representation, we obtain the input-to-
output characteristics in the Laplace domain as follows:

Theorem 1. The transfer function of (3) from u to y is given by

G∞(s) :=
β

α

J1

(
2
√
− s

2α

)
√
− s

2α J0

(
2
√
− s

2α

) (4)

where

Jk(z) :=
∞∑

m=0

(−1)m

m! (m + k)!

( z
2

)2m+k
, k ∈ {1, 2}. (5)

Proof. We prove the claim by following the procedure of trans-
fer function derivation (Curtain and Zwart, 1995; Curtain and
Morris, 2009). From the Laplace transform of (3) with respect
to t, we have

sX(s, ξ) = 2α
∂

∂ξ

(
ξ
∂X(s, ξ)
∂ξ

)
, ξ ∈ (0, 1)

X(s, ξ) =
β

α
U(s), ξ = 1

ξ
∂X(s, ξ)
∂ξ

= 0, ξ = 0

Y(s) =
∫ 1

0
X(s, ξ)dξ

(6)

where X, U and Y denote the Laplace transform of X, u and y,
respectively. We show that the solution of the two-point bound-
ary value problem in (6) is given by

X(s, ξ) =
β

α

J0

(
2
√
− s

2α

)
J0

(
2
√
− s

2α

)U(s). (7)

Note that (7) is expressed by

X(s, ξ) =
β

α

∑∞
m=0

1
(m!)2

(
sξ
2α

)m

∑∞
m=0

1
(m!)2

(
s

2α

)m U(s) (8)

from the definition of Jk, which is known as the Bessel function
(McLachlan, 1955). Substituting (8) into the first equation of
(6) yields

(LHS) =
β

α

∑∞
m=0

1
(m!)2

(
ξ

2α

)m
sm+1∑∞

m=0
1

(m!)2

(
s

2α

)m U(s)

(RHS) = 2α
∂

∂ξ

ξ βα
∑∞

m=1
m

(m!)2

(
s

2α

)m
ξm−1∑∞

m=0
1

(m!)2

(
s

2α

)m U(s)


= 2α

β

α

∑∞
m=1

1
{(m−1)!}2

(
s

2α

)m
ξm−1∑∞

m=0
1

(m!)2

(
s

2α

)m U(s)

=
β

α

∑∞
m′=0

1
(m′!)2

(
ξ

2α

)m′
sm′+1∑∞

m=0
1

(m!)2

(
s

2α

)m U(s)

where m′ := m − 1. Note that (7) also satisfies the second and
third boundary conditions. Finally, from∫ 1

0
J0

2 √
− sξ

2α

 dξ =
∫ 1

0

∞∑
m=0

1
(m!)2

( sξ
2α

)m

dξ

=

∞∑
m=0

1
m! (m + 1)!

( s
2α

)m

=

(√
− s

2α

)−1

J1

(
2
√
− s

2α

)
,

the result follows. □

This theorem shows that the input-to-output characteristics
have an explicit expression in terms of the Bessel function. Fur-
thermore, the following theorem describes particular properties
of G∞:

Theorem 2. The transfer function G∞ in (4) satisfies the fol-
lowing:

(i) It is an H∞-function expressed as the ratio of entire func-
tions.

(ii) The zeros and poles of G∞ are all negative real numbers,
and they interlace with each other.

(iii) The high- and low-frequency properties of G∞ are given
by


G∞(0) =

β

α

G∞( jω) ∼ β
α

√
2α
jω
, ω ≫ 1.
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Proof. Both J0(z) and z−1J1(z) are entire functions of z
(McLachlan, 1955). Furthermore, substituting z = 2

√
−s/(2α)

into them yields

J0

(
2
√
− s

2α

)
,

J1

(
2
√
− s

2α

)
√
− s

2α

(9)

that are entire functions as well. From the fact that G∞ is de-
fined as the ratio of the functions in (9), the poles and zeros
of G∞ are exactly the zeros of (9). Furthermore, all zeros of
J0(z) and z−1J1(z) are real-valued and simple, and the zeros and
poles of them are located interchangeably on the non-negative
real axis (McLachlan, 1955). Hence, considering the range of
value of 2

√
−s/(2α) proves (ii).

Next, we prove (iii). The first claim is readily verified from
the direct calculation of G∞(0). To prove the second claim, it
suffices to show that

lim
r→∞

α

β

√
re jθ

2α
G∞(re jθ) = 1 (10)

holds for any θ satisfying |θ| < π. We use the asymptotic ex-
pansion of the Bessel function (McLachlan, 1955). If z ∈ C
satisfies

∣∣∣arg z
∣∣∣ < π and |z| ≫ 1, the Bessel function is approxi-

mated by

Jk (z) ∼
√

2
πz

cos
(
z − 2k + 1

4
π

)
. (11)

Using (11), we have

α

β

√
s

2α
G∞ (s) ∼

√
s

2α
cos

(
2
√
− s

2α
− 3

4
π

)
√
− s

2α
cos

(
2
√
− s

2α
− 1

4
π

) .
Define r :=

√
2r/α ≥ 0. Taking the principal value of the

square roots yields

√
s

2α
=

r
2

e j θ2 ,

√
− s

2α
=


− j

r
2

e j θ2 , θ ∈ (0, π)

j
r
2

e j θ2 , θ ∈ (−π, 0].

Hence, (10) follows from the fact that

lim
r→∞

cos
(
− jre j θ2 − 3

4π
)

cos
(
− jre j θ2 − 1

4π
)

= lim
r→∞

er cos θ2 e(r sin θ2−
3
4 π) j + e−r cos θ2 e−(r sin θ2−

3
4 π) j

er cos θ2 e(r sin θ2−
1
4 π) j + e−r cos θ2 e−(r sin θ2−

1
4 π) j
= − j

holds for θ ∈ (0, π), and

lim
r→∞

cos
(

jre j θ2 − 3
4π

)
cos

(
jre j θ2 − 1

4π
)

= lim
r→∞

e−r cos θ2 e(−r sin θ2−
3
4 π) j + er cos θ2 e−(−r sin θ2−

3
4 π) j

e−r cos θ2 e(−r sin θ2−
1
4 π) j + er cos θ2 e−(−r sin θ2−

1
4 π) j
= j

holds for θ ∈ (−π, 0].

From the discussion above, G∞ is an analytic function in the
right half plane. Furthermore, the boundedness of G∞ in the
right half-plane follows from (10). Hence, (i) follows. □

Practical interpretation of Theorems 1 and 2 is given in Sec-
tion 4.1.

4. PI Control System Design Based on Spatial Discretiza-
tion

4.1. Finite-Dimensional Approximation via Spatial Discretiza-
tion

We derive a finite-dimensional approximant of (3) by using
a standard spatial discretization approach (Strikwerda, 2004;
Takami and Kawamura, 1994). Let us approximate the con-
tinuous spatial variable ξ ∈ [0, 1] by a set of discrete points
ξk := k/n for k ∈ {0, 1, . . . , n}. Defining the state variables by
xi(t) := X(t, ξi) for each i ∈ {1, . . . , n}, we have the state equa-
tion

ẋi = 2α
1
∆ξ

{
ξi(xi+1 − xi)
∆ξ

− ξi−1(xi − xi−1)
∆ξ

}
= αn{−ri−1xi−1 + (ri−1 + ri)xi − rixi+1}

where ∆ξ := 1/n and ri := 2i. Note that x0 is replaced with 0,
and xn+1 is replaced with the input signal (β/α)u, as complying
with the boundary conditions. Furthermore, the output equation
is given by

y =
n∑

i=1

xi∆ξ =
1
n

n∑
i=1

xi.

Then, we obtain a finite-dimensional state-space model as{
ẋ = Ax + bu
y = cx

where x := [x1, . . . , xn]T and

A = −αn



r1 −r1
−r1 r1 + r2 −r2

. . .
. . .

. . .

. . .
. . . −rn−1
−rn−1 rn−1 + rn


b = βnrn


0
...
0
1

 , c = n−1
[

1 · · · 1
]
.

(12)

Hereafter, we denote its transfer function by

Gn(s) := c(sIn − A)−1b. (13)

This finite-dimensional model is reasonable in the following
sense: We can verify that A in (12) is rewritten as A = −αnLRLT

with

L =


1
−1 1

. . .
. . .

−1 1

 , R =


r1

r2
. . .

rn

 .
5



−100

−80

−60

−40

−20

0

M
ag

n
it

u
d
e 

[d
B

]

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−90

−45

0

P
h
as

e 
[d

eg
]

Frequency  [rad/sec]

Figure 6: Bode Diagrams of the Spatial Discretization Model and the PDE
System.

This representation of A implies that it is symmetric and nega-
tive definite, namely, stable for any n. The stability of the origi-
nal G∞ is proven in Theorem 2 (i). Moreover, since the inverse
of L is given by

L−1 =


1
...
. . .

1 · · · 1

 ,
we can verify that Gn(0) = −cA−1b = β/α. This implies that the
steady-state value of Gn does not depend on n. Furthermore, it
is identical to G∞(0), as shown in Theorem 2 (iii).

We observe the variations of Gn with respect to n. Figure 6
depicts the Bode diagrams of Gn for n ∈ {1, 5, 30, 80} and that
of G∞ in Theorem 1. This figure shows that, as n increases, the
frequency property of Gn approaches that of G∞ gradually from
the low-frequency range to the high-frequency range, and the
slope of the gain characteristic of Gn approaches −10 dB/dec.
From this observation, we can expect that the behavior of Gn

comes closer to the behavior of the PDE model in (3) as n in-
creases. Furthermore, the property in Theorem 2 (ii) leads to
the fall-off of the gain characteristics at −10 dB/dec in the high-
frequency range. This property is mathematically rephrased in
Theorem 2 (iii).

Next, we compare the system Gn with the molding machine.
The Bode diagrams of G1, G80 and the molding machine are
shown in Fig. 7. The molding machine property is identified
by the frequency response method. We can see from Fig. 7 that
the slope of the gain characteristics of the machine is also −10
dB/dec in the high-frequency range (with the mismatch of the
phase in high-frequency ranges possibly being caused by time
delay from the system identification equipment). This feature
conforms to the result of Theorem 2-(iii). Furthermore, Fig. 8
shows the step responses of the closed-loop system. From this
figure, we can see that the step response of G80 properly cap-
tures that of the molding machine. Note that the poor settling
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Figure 7: Bode Diagrams of the Spatial Discretization Model and the Machine
Experiment.

time to the steady-state value, observed in Section 2, is appro-
priately captured as well.

In general, the gain characteristics of rational functions hav-
ing relative degree k falls off at a slope of −20k dB/dec in
the high-frequency range. This implies that the behavior of
the molding machine is hard to capture by (especially low-
dimensional) rational functions. Actually, as shown in Fig. 8,
the first-order model G1 does not follow the oscillatory behav-
ior as well as the poor settling property. Hence, from the anal-
yses above, we conclude that the unique behavior of the mold-
ing machine can be captured only by a high-dimensional spatial
discretization model.

4.2. Finite-Frequency Loop-Shaping via Spatial Discretization

First, we introduce a PI control design method via the GKYP
lemma (see Appendix A), and we then apply it to the spatially
discretized model derived in Section 4.1 (Iwasaki and Hara,
2005; Hara et al., 2006). We define the open-loop transfer func-
tion LK , which is composed of a system X and the PI controller
K, by

LK(s; X) := K(s)X(s), K(s) := kP +
kI

s
. (14)

In this notation, we consider the following loop-shaping prob-
lem:

Problem. Given a set of transfer functions Xi, a set of non-
negative real numbers Ωi ⊂ R+, and a set of real numbers
(ai, bi, ci) ∈ R3 for i ∈ {1, . . . ,m}, find all kP and kI in (14)
such that

aiRe[LK( jω; Xi)] + biIm[LK( jω; Xi)] < ci (15)

for all ω ∈ Ωi and i ∈ {1, . . . ,m}.
6
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As shown in (15), this loop-shaping problem is formulated
in terms of frequency domain inequalities. Actually, solving
the problem by trial and error is a time-consuming task. Con-
versely, since the structure of K is restricted to the PI con-
trollers, the GKYP lemma can equivalently translate the prob-
lem with a set of rational functions Xi into linear matrix inequal-
ities (LMIs). In fact, LMIs can be efficiently solved especially
for low-dimensional matrices.

More specifically, the frequency domain inequality (15) can
be transformed to LMIs as follows: For a given rational func-
tion Xi(s) = Ci(sIn − Ai)−1Bi, the open-loop transfer function
LK in (15) can be represented by

LK(s; Xi) = Ci(sIn+1 −Ai)−1Bi

where

Ai =

[
0 Ci

0 Ai

]
, Bi =

[
0
Bi

]
, Ci =

[
kI kPCi

]
.

Furthermore, suppose that Ωi = [ω1, ω2] ⊂ R+ and (ai, bi, ci) ∈
R3 are given. Then, (15) holds for all ω ∈ Ωi if and only if there
exist Pi = P∗i and Qi = Q∗i > 0 such that[

Ai Bi

In+1 0

]∗
(Φ ⊗ Pi + Ψi ⊗ Qi)

[
Ai Bi

In+1 0

]
+ Θi < 0 (16)

holds, where ⊗ denotes the Kronecker product and

Φ =

[
0 1
1 0

]
, Ψi =

 −1 j
ω1 + ω2

2
− j
ω1 + ω2

2
−ω1ω2


Θi =

[
Ci 0
0 1

]∗
Πi

[
Ci 0
0 1

]
, Πi =

1
2

[
0 ai + jbi

ai − jbi 2ci

]
.

Note that, since (16) is linear with respect to not only kP and kI

but also ci, we can use them as a set of LMI decision variables.
Based on this LMI, we can determine a feasible gain parameter
space under a given constraint.

The optimization approach to solve the loop-shaping prob-
lem is actually similar to parameter space methods; see (Saeki
and Aimoto, 2000) for example. This kind of method finds a
parameter space that is feasible under a constraint at a finite
number of frequency points. However, it should be remarked
that the satisfaction of the frequency domain inequality at a fi-
nite number of points is not necessarily sufficient because it is
just a necessary condition to meet (15) for all ω ∈ Ωi. In con-
trast, the GKYP lemma-based loop-shaping method can solve
the loop-shaping problem with respect to an infinite number of
frequency points by solving equivalent LMIs. The mathemati-
cal exactness is a major advantage of the GKYP lemma-based
loop-shaping method. An interpretation of Ωi and (ai, bi, ci),
and their relation to the design problem will be more clearly
explained through the discussion that follows.

It should be further noted that this loop-shaping problem can-
not be solved for the infinite-dimensional G∞ in (4) straight-
forwardly, although the direct use of G∞ is desirable. Alterna-
tively, based on the observation in Section 4.1, we may use G80,
which appropriately captures the property of G∞. However,
such a high-dimensional model is not necessarily tractable.
This is because heavy computational cost is required to solve
the LMIs, and it is possibly time-consuming for adjusting de-
sign specifications. Furthermore, an alternative framework to
capture the decay of -10 db/dec is available based on knowl-
edge of fractional order systems (Podlubny, 1999). However,
such a fractional order model is not practically implementable
because the systems are inevitably infinite-dimensional.

In view of this, let us use the five-dimensional model G5 in
the following optimization. We find kP and kI such that κ is
minimized under the constraint

Ω1 = [1, 5], (a1, b1, c1) = (10,−1, 0)
Ω2 = [500, 1100], (a2, b2, c2) = (0, 1,−2)
Ω3 = [2000, 8000], (a3, b3, c3) = (−1.5, 1, κ)

(17)

on Xi = FG5 for i ∈ {1, 2, 3}, where the characteristics of the
filter in Fig. 3 are given by

F(s) =
(

1
1 + τs

)2

, τ = 3.00 × 10−4 (18)

and the constants in (4) and (12) are assigned α = 1.2352 and
β = 1.1621 × 103. The values of τ, α and β are determined as
complying with the machine experiment.

For this optimization problem, we give an intuitive expla-
nation as follows: We minimize κ under constraints on FG5
in the finite frequency range Ωi for i ∈ {1, 2, 3}. The con-
straints are defined by the half-planes assigned by the param-
eters (ai, bi, ci) for i ∈ {1, 2, 3}. More specifically, the first
and second constraints guarantee desired gains in the low- and
middle-frequency ranges, and the third constraint maximizes
the stability margin by minimizing κ. The gains in the low-
and middle-frequency ranges are specified to achieve a desired
transient rate of the closed-loop system. It should be noted
that the design specification is determined only by (ai, bi, ci) for
i ∈ {1, 2, 3}, and thus, it can be simply adjustable by engineers
and operators.

7
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Figure 9: Nyquist Plots of Open-Loop Transfer Functions.

By solving the corresponding LMIs, we obtain the optimal
solution

kP = 0.0972, kI = 3.0121, κ = 0.3283.

For these parameters, Fig. 9 shows the Nyquist plots of
LK(s; FG5) (solid line) and LK(s; FG∞) (broken line), where
the lines of : and ∗ denote the ranges of Ω2 and Ω3, respec-
tively. From the Nyquist plots of LK(s; FG5), a sufficient sta-
bility margin seems to be guaranteed. However, looking at the
Nyquist plot of LK(s; FG∞), we see that the stability margin of
the closed-loop system is severely lost. This undesirable result
comes from the fact that G5 does not capture the property of G∞
around the high frequency range Ω3 = [2000, 8000], in which
the constraint to maximize the stability margin is imposed. This
demonstrates a spillover effect caused by the unmodeled dy-
namics, namely the discrepancy between G5 and G∞.

5. PI Control System Design Based on Multiple Finite-
Frequency Models

5.1. Taking Advantage of the GKYP Lemma
We propose a novel loop-shaping method based on the theo-

retical analysis in Section 3. In this method, the loop-shaping is
performed by explicitly taking advantage of the GKYP lemma.

Recall that, in Section 4.2, we have solved the loop-shaping
problem using the rational function models Xi = FG5, which
are identical for all i ∈ {1, 2, 3} and have real coefficients. This
setting is actually standard for control system design via the
GKYP lemma; see (Hara et al., 2006) for a specific discussion
on the loop-shaping problem. In contrast, our proposed loop-
shaping method has the following features:

• We simultaneously use multiple different models Xi for i ∈
{1, . . . ,m}.

• We solve the optimization problem for rational functions
having complex coefficients.

By taking advantage of these features, we execute PI gain opti-
mization by using different rational transfer functions with com-
plex coefficients that are valid in the specified finite frequency
ranges.

As shown in Section 4.2, it is important that a finite-
dimensional model appropriately captures the system proper-
ties in frequency ranges in which a set of constraints to achieve
the design specification is imposed. In particular, to sup-
press the spillover effect degrading closed-loop stability, we re-
quire a low-dimensional model that properly captures the high-
frequency properties of the system.

One possible approach for obtaining such an approximate
model is to use model reduction methods. In particular,
the weighted balanced truncation and the moment matching
method, which approximate input-to-output characteristics for
specified input signals, may be useful; see (Antoulas, 2005) for
an overview for the approximation of finite-dimensional sys-
tems. However, for infinite-dimensional systems, we often face
computational difficulties in constructing approximants. For
example, to implement the rational interpolation method pro-
posed in (Harkort and Deutscher, 2011), we need to solve an
iterative boundary value problem for a continuous function.

In view of this difficulty, we utilize the analysis of the high-
frequency characteristics of G∞ in Theorem 2 (iii). Since the
high-frequency characteristics are not expressed in terms of
rational functions, we approximate it by a Taylor expansion.
More specifically, denoting by f (s;ωc, n) the n-dimensional
Taylor expansion of f (s) := (1 + τs)2 √s around s = jωc, we
approximate the high-frequency property of G∞ with the filter
F by

F(s)G∞(s) ∼ β
√

2α
α

1
f (s;ωc, n)

=: X̂(s;ωc, n) (19)

for ωc ≫ 1. It should be noted that X̂ has complex coeffi-
cients in general. Based on this approximation, we obtain a
set of finite-dimensional models that are valid in the specified
high-frequency ranges. In addition, we can expect that compu-
tational effort to solve LMIs will be reduced because the fine ap-
proximation is required only for the specified frequency ranges.

To ensure the validity of this approximation, we show
the Bode diagrams of X̂(s; 1000, 3) (short-dashed line),
X̂(s; 3000, 3) (dash dotted line) and FG∞ (solid line) in Figure
10. From this figure, it turns out that FG∞ is well approximated
around s = jωc for each ωc ∈ {1000, 3000}. This observation
also shows that only a three-dimensional model is sufficient for
finite-frequency loop-shaping.

Using this approximate model, we find kP and kI such that κ
is minimized under the constraint (17) on

X1(s) = F(s)G5(s), X2(s) = X̂(s; 1000, 3)
X3(s) = X̂(s; 3000, 3).

(20)

Then we obtain the optimal solution

kP = 0.0499, kI = 4.6150, κ = 0.3486.

For these parameters, Figure 11 depicts the Nyquist plots of
LK(s; FG∞) (solid line) and LK(s; Xi) (broken lines) for i ∈
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Figure 11: Nyquist Plots of Open-Loop Transfer Functions.

{1, 2, 3}, where the lines of : and ∗ denote the ranges of Ω2
and Ω3, respectively. This figure shows that maximization of
the stability margin is successfully achieved without a large
discrepancy. In fact, the spillover effect is suppressed despite
the use of low-dimensional approximants. This success comes
from developing a novel loop-shaping framework; that is, we
use the GKYP lemma-based loop-shaping method in conjunc-
tion with a set of multiple low-dimensional approximate models
that work in specified finite frequency ranges.

We summarize the procedure of the proposed method. For
a given infinite-dimensional transfer function G∞ in (4) with a
filter F in (18), the GKYP lemma-based loop-shaping is carried
out as follows:

(i) Determine a design specification by giving a set of fre-
quency ranges Ωi ⊂ R+, and a set of half-planes described
by (ai, bi, ci) ∈ R3 for i ∈ {1, . . . ,m} in the frequency do-
main inequality (15).

(ii) Construct a set of rational function models Xi(s), which

can be given as the Taylor expansion model X̂(s;ωc, n)
in (19) or the spatial discretization model Gn(s) in (13),
such that the frequency property of Xi( jω) appropriately
approximates that of F( jω)G∞( jω) in the frequency range
ω ∈ Ωi.

(iii) Find feasible controller parameters kP and kI by minimiz-
ing one of the parameters ci using the equivalent LMIs de-
fined as in (16).

It should be noted that this loop-shaping method may be ap-
plicable to infinite-dimensional (or high-dimensional) systems
other than diffusion systems as in (3), as long as a set of suit-
able approximate models Xi, which possibly have complex co-
efficients, is available.

5.2. Experimental Verification
We show the efficacy of the proposed loop-shaping method

through experimental verification. With several values of γ,
which expresses the second constraint denoted by the dash dot-
ted line in Figure 11, we find kP and kI such that κ is minimized
under the constraint

Ω1 = [1, 5], (a1, b1, c1) = (10,−1, 0)
Ω2 = [500, 1100], (a2, b2, c2) = (0, 1,−γ)
Ω3 = [2000, 8000], (a3, b3, c3) = (−1, 1, κ)

on (20). Then we obtain the optimal solutions

kP = 9.6 × 10−4, kI = 7.3 × 10−1, κ = 4.8 × 10−3

if γ = 0.1, and

kP = 1.9 × 10−3, kI = 1.5, κ = 9.6 × 10−3

if γ = 0.2. Compared with the experiment in Section 2, we no-
tice that the optimal values of the proportional gain are smaller
and the optimal values of the integral gain are larger than the
controller gains that we have used for the experiment shown in
Fig. 4.

For these optimal parameter sets, Figure 12 depicts numer-
ical and experimental results of the closed-loop step response,
where the numerical simulation is implemented by using G80 in
(13). This figure shows that the step responses in both numer-
ical and experimental results converge to the target value and
also that the convergence rate improves by increasing the value
of γ. However, discrepancies of the step response between the
numerical and experimental results become larger with greater
values of γ. Moreover, because of oscillation of the molding
machine, we cannot execute the experiment if γ ≥ 0.3. This
oscillation might be the result of unmodeled elements such as
the nonlinearity neglected in the derivation of (3).

In addition, Figure 13 shows a trade-off relation between
γ and κ, namely, the degree of guaranteed gain in middle-
frequency ranges and the degree of robustness of the closed-
loop system. This trade-off relation implies that it is difficult
to improve the convergence rate without losing some margin
of stability. In other words, the proposed method substantially
demonstrates a performance limitation of PI control for a class
of thermal diffusion systems. It should be emphasized that such
a limitation cannot be verified by using heuristic parameter tun-
ing.

9
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6. Conclusion

In this paper, we have proposed a finite-frequency loop-
shaping method for an electromagnetic molding machine,
which belongs to a class of infinite dimensional diffusion sys-
tems. The proposed method takes the GKYP lemma-based
loop-shaping approach in conjunction with a set of multiple
low-dimensional approximants that are valid in specified finite
frequency ranges. By using this method, an optimization prob-
lem to design a PI control system has been solved with practical
computational effort.

Spatially distributed phenomena are important to industrial
applications. However, they are not necessarily tractable ow-
ing to their infinite dimensionality. One representative example
is the spillover effect demonstrated in Section 4. Overcoming
such a difficulty, we have solved a PI gain optimization prob-
lem for a class of infinite-dimensional systems. This success
stems from the derivation of a set of finite-dimensional approx-
imants that not only are suitable for the GKYP lemma-based
loop-shaping but also appropriately capture the system prop-
erty required for control system design. This result sheds light
on the significance of objective-based system modelling.

Appendix A. The Generalized KYP Lemma

For reference, we provide the statement of the GKYP lemma
(Iwasaki and Hara, 2005) used in this paper.

Theorem 3. Given A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n and D ∈
Cp×m, define

σ(G(λ),Π) :=
[

G∗(λ) Im

]
Π

[
G(λ)

Im

]
where Π = Π∗ ∈ C(p+m)×(p+m) and G(λ) := C(λIn − A)−1B + D.
Furthermore, define

Λ(Φ,Ψ) := {λ ∈ C : σ(λ,Φ) = 0, σ(λ,Φ) ≥ 0},

where Φ = Φ∗ ∈ C2×2 and Ψ = Ψ∗ ∈ C2×2, and assume that
det(λIn − A) , 0 holds for all λ ∈ Λ(Φ,Ψ). Then, σ(G(λ),Π) <
0 holds for all λ ∈ Λ(Φ,Ψ) if and only if there exist P = P∗ ∈
Cn×n and a positive definite Q = Q∗ ∈ Cn×n such that[

A B
In 0

]∗
(Φ ⊗ P + Ψ ⊗ Q)

[
A B
In 0

]
+ Θ < 0

where

Θ =

[
C D
0 Im

]∗
Π

[
C D
0 Im

]
.
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