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Abstract

In this paper, we develop a retrofit control method with approximate environment modeling. Retrofit control is a modular control
approach for a general stable network system whose subsystems are supposed to be managed by their corresponding subsystem
operators. From the standpoint of a single subsystem operator who performs the design of a retrofit controller, the subsystems
managed by all other operators can be regarded as an environment, the complete system model of which is assumed not to be
available. The proposed retrofit control with approximate environment modeling has an advantage that the stability of the resultant
control system is robustly assured regardless of not only the stability of approximate environment models, but also the magnitude of
modeling errors, provided that the network system before implementing retrofit control is originally stable. This robustness property
is practically significant to incorporate existing system identification methods of unknown environments, because the accuracy of
identified models may neither be reliable nor assurable in reality. Furthermore, we conduct a control performance analysis to show
that the resultant performance can be regulated by adjusting the accuracy of approximate environment modeling. The efficiency of
the proposed retrofit control is shown by numerical experiments on a network of second-order oscillators.
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1 Introduction

A module is one of semi-independent parts or subsystems
in an integrated system of components. For example, in
software development, a unit of programs that can be han-
dled by an individual developer is called a software module
[Parnas, 1972]. As pointed out in a broad range of litera-
ture [Baldwin and Clark, 2000, Huang and Kusiak, 1998,
Schilling, 2000], increasing the modularity in design is the
key to developing large-scale complex systems with flexi-
bility to meet heterogeneous demands. Such “modular de-
sign” enables multiple entities or subsystem operators to in-
dividually develop, modify, and replace respective modules
or subsystems, serving for significant reduction of efforts to
adjust and coordinate a family of integrated components.
This is a strong advantage as compared to “integral design,”
where each component has strong interdependence among
others [Ulrich, 2003].

For dynamical network systems, a modular design method
of decentralized controllers has been introduced in the con-
text of retrofit control [Inoue et al., 2018, Ishizaki et al.,
2018b, Sadamoto et al., 2018, Sasahara et al., 2018]. The
retrofit control can be applied to a general stable network
system whose subsystems are supposed to be managed by
their corresponding subsystem operators. From the stand-
point of a single subsystem operator who performs the de-
sign of a retrofit controller, the subsystems managed by all
other operators can be regarded as an environment, the sys-
tem model of which is assumed not to be available. This
reflects a practical situation where subsystem models, con-
trol policies, and demands of the other subsystem operators
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may not be public and stationary.

Most existing decentralized and distributed control meth-
ods, such as in [Langbort et al., 2004, Rantzer, 2015,
Rotkowitz and Lall, 2006, Šiljak, 1972, Šiljak and Zečević,
2005], can be classified as an integral design approach of
structured controllers, where a single authority with avail-
ability of an entire system model is premised for simultane-
ous design of all subcontrollers constituting a decentralized
or distributed controller. In contrast, the retrofit control
is classified as a modular design approach, where multi-
ple subsystem operators are supposed to parallelly design
individual retrofit controllers with accessibility only to re-
spective subsystem models. A retrofit controller is defined
as an add-on type localized controller such that the stabil-
ity of the resultant control system can be robustly assured
for any possible variation of environments such that the
original network system before implementing retrofit con-
trol is stable. We aim at improving the resultant control
performance while preserving the entire network stability.

In the line of our previous work, it is shown that such a
retrofit controller from the standpoint of each subsystem
operator can be designed without requiring any model of its
environment; see, e.g.,[Ishizaki et al., 2018b]. However, this,
at the same time, implies that no information of an actual
environment is used for retrofit controller design. Therefore,
the resultant control performance is generally dependent on
the possible variation of environments. Such a low degree of
freedom in the existing retrofit control could make a possi-
ble bottleneck for performance regulation, as will be demon-
strated in this paper. In fact, there remains a possibility to
make use of some available information of environments to
further improve the resultant control performance.

With this background, to reduce such a bottleneck in the
existing retrofit control, we aim at developing a novel de-
sign method of retrofit controllers such that the resultant
control performance can be regulated by adjusting the accu-
racy of approximate environment modeling. In particular,
we show that the stability of the resultant control system is
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robustly assured regardless of not only the stability of ap-
proximate environment models, but also the magnitude of
modeling errors. This robustness property of the proposed
retrofit control is practically significant to incorporate exist-
ing identification methods of unknown environments, such
as in [Bishop, 2006, Ljung, 1998], because the accuracy of
identified models may neither be reliable nor assurable in re-
ality. Furthermore, we conduct a control performance anal-
ysis to show that the foregoing bottleneck in the existing
retrofit control can be reduced by improving the accuracy
of environment modeling. It should be noted that we do not
explicitly discuss how to produce an approximate environ-
ment model in this paper, but we discuss how to effectively
utilize an approximate environment model found by some
offline identification before implementing retrofit control.

A distributed design method of decentralized controllers
is developed in [Langbort and Delvenne, 2010], where
the authors discuss the performance limitation of a linear
quadratic regulator designed in a modular fashion. This
result is then generalized to the case of a network of multi-
dimensional subsystems, the states of which are assumed
to be fully controlled [Farokhi et al., 2013]. As an approach
to modular design of decentralized controllers, a system
decomposition method based on an integral quadratic
constraint is developed in [Pates and Vinnicombe, 2017].
Though their formulation can actually frame a broad class
of systems, conditions required for decomposed subsystems
are generally conservative as remarked there. As compared
to these related approaches, the retrofit control has the
advantage of applicability to more general stable network
systems, for which we just assume the measurability of
interconnection signals among subsystems.

We remark also that the retrofit control has a clear dis-
tinction from plug-and-play control [Bendtsen et al., 2013,
Stoustrup, 2009], in which incremental addition of new de-
vices, such as controllers, is considered for a working control
system. In general, the existing design schemes for plug-and-
play control are not modular, meaning that an entire sys-
tem model or its estimation is required for controller design.
From the viewpoint of modularity in design, we can also find
a similarity with control system design based on passivity,
or, more generally, dissipativity and passivity shortage [Hill
and Moylan, 1978, Qu and Simaan, 2014, Willems, 1972]. It
is well known that negative feedback of passive subsystems
retains the passivity. This means that the stability of the en-
tire network system can be ensured if individual subsystems
are designed to be passive. However, though a theoretically
grounded procedure with modularity can be developed, the
applicability of such a passivity-based approach is restric-
tive as compared to the retrofit control. This is simply be-
cause a network system of interest is not always decompos-
able into passive or passifiable subsystems.

The proposed retrofit control with approximate environ-
ment modeling is relevant to low-dimensional controller de-
sign based on model reduction [Antoulas, 2005, Girard and
Pappas, 2009, Obinata and Anderson, 2001]. In particular,
we can consider first applying model reduction to a system
of interest, and then perform controller design based on the
resultant approximate model, where an approximation error
due to model reduction can be handled as a model uncer-
tainty in robust control [Zhou et al., 1995]. However, such a
model reduction method may not be applicable for a prac-
tical network system managed by multiple subsystem oper-

ators because a “complete” system model, to which model
reduction is applied, is generally difficult to obtain. In view
of this, there are practical difficulties not only to find an ap-
proximate model, but also to assure the accuracy of approx-
imate models. The proposed retrofit control is a promising
approach based on approximate modeling that can assure
the control system stability without requiring the assurance
of approximation accuracy. We remark that such an “unas-
sured modeling error” is not considered in a standard robust
control setting.

The remainder of this paper is organized as follows. In Sec-
tion 2, we first review several existing results of retrofit
control as a preliminary, giving a motivating example that
demonstrates a bottleneck in the existing retrofit control.
In Section 3, we develop a novel retrofit control method
with approximate environment modeling. Section 4 revisits
the motivating example to show practical significance of the
proposed retrofit control. Finally, concluding remarks are
provided in Section 5.

Notation The notation in this paper is generally standard:
The identity matrix with appropriate size is denoted by I.
The set of stable, proper, real rational transfer matrices is
denoted byRH∞. For simplicity, all transfer matrices in the
following are assumed to be proper and real rational. The
L∞-norm of a transfer matrixG with no singularities on the
imaginary axis is denoted by ∥G∥∞, which coincides with
the H∞-norm if G is stable. A transfer matrix K is said to
be a stabilizing controller for G if the feedback system of G
andK is internally stable in the standard sense [Zhou et al.,
1995].

2 Review of Existing Retrofit Control

2.1 General Formulation

We first review several existing results of retrofit control re-
ported in [Inoue et al., 2018, Ishizaki et al., 2018b, Sadamoto
et al., 2018, Sasahara et al., 2018]. Consider an intercon-
nected linear system depicted in Fig. 1(a) where

w

z

y

 =


Gwv Gwd Gwu

Gzv Gzd Gzu

Gyv Gyd Gyu


︸ ︷︷ ︸

G


v

d

u

 (1a)

is referred to as a subsystem of interest for retrofit control,
and

v = Gw (1b)

is referred to as its environment. From the viewpoint of
controlling a general network system composed of multiple
subsystems, G corresponds to a particular subsystem for
which a retrofit controller is designed by a subsystem op-
erator, while the environment G corresponds to a lumped
representation of all other subsystems, which can be high-
dimensional. In this formulation, the subsystem model of G
is assumed to be available for the retrofit controller design,
while that of G, which can be affected by other subsystem
operators, is assumed to be unknown.

We denote the interconnection signals between the subsys-
tem and its environment by w and v, the evaluation output
and disturbance input by z and d, and the measurement
output and control input by y and u, respectively. For the
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Fig. 1. (a) Preexisting system composed of a subsystem of in-
terest and its environment. (b) Resultant control system.

subsequent discussion, we use symbols denoting the subma-
trices of G, for example, as

G(z,y)(d,u) :=

[
Gzd Gzu

Gyd Gyu

]
, G(z,y)v :=

[
Gzv

Gyv

]
,

Gw(d,u) :=
[
Gwd Gwu

]
.

(2)

Then, we introduce the transfermatrixGpre : (d, u) 7→ (z, y)

defined by the feedback system of G and G as

Gpre := G(z,y)(d,u) +G(z,y)vG(I −GwvG)−1Gw(d,u). (3)

We refer to Gpre as a preexisting system, described as the
dotted box in Fig. 1(a). Based on this system description,
the notion of retrofit controllers is defined as follows.

Definition 2.1 For the preexisting system Gpre in (3), de-
fine the set of all admissible environments as

G :=
{
G : Gpre is internally stable

}
. (4)

An output feedback controller

u = Ky (5)

is said to be a retrofit controller if the resultant control sys-
tem in Fig. 1(b) is internally stable for any possible envi-
ronment G ∈ G.
The retrofit controller is defined as an add-on type localized
controller such that the internal stability of the resultant
control system can be assured for any possible variation
of environments such that the preexisting system is stable.
The internal stability of the entire network system must be
preserved by retrofit control, though it is formulated from
the viewpoint of a single subsystem operator.

Remark Note that the norm bound of the environment G
is not premised. Instead, we just premise the internal sta-
bility of the preexisting system. Furthermore, G can involve
not only (physical) subsystems but also preexisting stabi-
lizing controllers for unstable systems. In fact, a practically
working system in reality, such as a power system, is being
operated stably with some preexisting controllers. A major
advantage of the retrofit control is that we do not have to
care about how a network system is stabilized before the
retrofit control. On the other hand, one may think that ad-
ditional controllers are not necessary for such a stable sys-
tem. However, we often face a situation where local control
performance is not very satisfactory, while available infor-
mation of system models is limited. This motivates us to
discuss the retrofit control problem where each of subsys-
tem operators aims at improving local control performance
with accessibility only to respective subsystem models.

Based on this definition, we first consider giving a parame-

terization of retrofit controllers. To avoid unnecessary com-
plication of the Youla parameterization [Youla et al., 1976],
we make the following assumption.

Assumption 2.1 The subsystem G in (1a) is stable.

Assumption 2.1 is made just for ensureing the visibility of
a particular structure inside the retrofit controller, but it is
not crucial to prove the resultant control system stability,
as will be shown in Theorem 3.3. Then, we can derive the
following parameterization of retrofit controllers.

Proposition 2.1 Let Assumption 2.1 hold. Consider the
Youla parameterization of K in (5) as

K = (I +QGyu)
−1Q, Q ∈ RH∞ (6)

where Q is the Youla parameter. If

QGyv = 0, (7)

then K is a retrofit controller.

Proposition 2.1 shows that the constrained version of the
Youla parameterization in (7) gives the parametrization of
retrofit controllers. In this paper, following the terminol-
ogy in [Ishizaki et al., 2018b, Sasahara et al., 2018], we re-
fer to a retrofit controller K parameterized by (7) as an
output-rectifying retrofit controller. It has been shown that
such a class of retrofit controllers can always be constructed
if the interconnection signal v from the environment or
the internal state of G of interest is measurable. We re-
mark that, more generally, “all” retrofit controllers can also
be parameterized by the Youla parameterization such that
GwuQGyv = 0, which is more general than (7). This gen-
eral parameterization, derived in [Inoue et al., 2018, Sasa-
hara et al., 2018], further shows that the retrofit controller
in Definition 2.1 can be characterized as a controller such
that the transfer matrix from v to w of the local control sys-
tem isolated from the environment is kept invariant. This
can be seen as follows. Let G′

wv : v 7→ w denote the transfer
matrix from v to w in Fig. 1(b) as removing the block of G.
Then, we have G′

wv = Gwv +GwuQGyv, which implies that
G′

wv = Gwv for any retrofit controller.

Remark One may think that the environment G can be
regarded as a model uncertainty in robust control. However,
such a model uncertainty is typically assumed to be norm-
bounded in a standard robust control setting. In contrast,
the stability of the preexisting system, i.e., the stability of
the feedback system of G and G before controller imple-
mentation, is premised in the formulation of retrofit control.
In fact, this formulation leads to a particular class of con-
trollers such that the interconnection transfer matrix is kept
invariant as explained above. This further implies that the
retrofit control does not aim at decoupling the subsystem G
from the environment G, but it “preserves” the dynamics
with respect to the interconnection of G and G, the stabil-
ity of which is premised as the preexisting system stability.
Therefore, we clearly see that the policy of retrofit control
is essentially different from those of standard robust control
[Zhou et al., 1995], decoupling control [Falb and Wolovich,
1967], and disturbance rejection (interconnection signal re-
jection) control [Wang and Hovakimyan, 2013] in the liter-
ature.

2.2 Review of Output-Rectifying Retrofit Control

As a preliminary for the main theoretical developments in
Section 3, we review specific results on output-rectifying
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retrofit control in Proposition 2.1. These results can be de-
rived as a simple generalization of results in [Inoue et al.,
2018, Sasahara et al., 2018], but are not exactly the same
as those. In the rest of this paper, we consider the following
situation.

Assumption 2.2 The interconnection signal v and w are
measurable in addition to the measurement output y in (1).

Assumption 2.2 is not restrictive even in the application to
large-scale systems. As a practical example, let us consider
the control of a power system discussed in [Sadamoto et al.,
2018], where a retrofit controller is designed for a wind farm.
In such a setting, the interconnection input v represents
the voltage at the bus connected with the wind farm of
interest, while the interconnection output w represents the
current flowing through that bus. In fact, these signals can
be measured by a phase measurement unit (PMU) attached
only to that bus in practice.

From a symbolic viewpoint, Assumption 2.2 corresponds
to the situation where every symbol y in the discussion of
Section 2.1 is to be replaced with the new measurement
output (y, w, v). Based on this premise, the transfer matrices
in (1a) relevant to y are also redefined. For example, Gyv

and Gyu are redefined as

G(y,w,v)v :=


Gyv

Gwv

I

 , G(y,w,v)u :=


Gyu

Gwu

0

 .

Furthermore, the controller K in (5) is also redefined as

u =
[
Ky Kw Kv

]
︸ ︷︷ ︸

K


y

w

v

 , (8)

the Youla parameterization of which can be written as

K = (I +QG(y,w,v)u)
−1Q, Q ∈ RH∞.

A simple but notable fact to be used is that

R :=

[
I 0 −Gyv

0 I −Gwv

]
(9)

is a basis of the left kernel of G(y,w,v)v in RH∞, i.e.,

QG(y,w,v)v = 0, Q ∈ RH∞

⇐⇒ ∃Q̂ ∈ RH∞ s.t. Q = Q̂R.
(10)

Using this left kernel basis R, we can rewrite (6) and (7) as

K = K̂R, K̂ = (I + Q̂G(y,w)u)
−1Q̂, Q̂ ∈ RH∞,

where we have used the fact that

G(y,w)u = RG(y,w,v)u. (11)

We refer to R : (y, w, v) 7→ (ŷ, ŵ) as an output rectifier, the
name of which is based on the fact that the measurement
output (y, w, v) is rectified in such a way that

ŷ = y −Gyvv, ŵ = w −Gwvv. (12)

The rectified output (ŷ, ŵ) is used as the input of K̂, which

Fig. 2. Block diagram of existing retrofit control.

is referred to as amodule controller. This discussion leads to
an “explicit” representation of all output-rectifying retrofit
controllers as follows.

Proposition 2.2 Let Assumptions 2.1 and 2.2 hold. Then,
K in (8) is an output-rectifying retrofit controller if and only
if

K = K̂R (13)

where K̂ is a stabilizing controller for G(y,w)u and R is de-
fined as in (9). Furthermore, the block diagram of the resul-
tant control system is depicted as in Fig. 2, i.e., the entire
map Tzd : d 7→ z is given as

Tzd = T̂zd(K̂) +Gzv(I −GGwv)
−1GT̂wd(K̂) (14)

where T̂zd : d 7→ ẑ and T̂wd : d 7→ ŵ denote the transfer
matrices compatible with Fig. 2, given as

T̂zd(K̂) := Gzd +GzuK̂(I −G(y,w)uK̂)−1G(y,w)d

T̂wd(K̂) := Gwd +GwuK̂(I −G(y,w)uK̂)−1G(y,w)d.
(15)

Proposition 2.2 can be proven as a special case of Theo-
rem 3.1 below. We remark that (14) can be derived based
on the fact that, for any output-rectifying retrofit controller
in the case of Assumption 2.2, the entire map is given as

Tzd = Gzd +GzuQG(y,w,v)d

+Gzv(I −GGwv)
−1G(Gwd +GwuQG(y,w,v)d).

(16)

This is derived by a standard calculation with the Youla pa-
rameterization ofK and G in Fig. 1(b) under the constraint
of (7); see [Sasahara et al., 2018] for details. As shown in

Proposition 2.2, if the module controller K̂ is designed as a
stabilizing controller for G(y,w)u, which is isolated from G,
then the stability of the resultant control system is always
assured by K in (13). This clearly shows the modularity of
retrofit controller design; the model information of G is not
required to assure, at least, the stability of the resultant
control system.

Next, we analyze the resultant control performance. From
the block diagram in Fig. 2, we see that z can be decomposed
as z = ẑ + ž where

ẑ = T̂zd(K̂)d, ž = Gzv(I −GGwv)
−1GT̂wd(K̂)d.

The triangular inequality for the induced norm of z leads to
the following upper and lower bounds.

Proposition 2.3 With the same notation as that in Propo-
sition 2.2, the resultant control performance is bounded as

|γ̌ − γ̂| ≤ ∥Tzd∥∞ ≤ γ̂ + γ̌ (17)
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Fig. 3. Second-order oscillator network composed of 36 nodes.
The subnetwork of the first six nodes corresponds to a subsystem
of interest, and the remaining part is its unknown environment.

where the induced gains of ẑ and ž are given as

γ̂ := ∥T̂zd(K̂)∥∞, γ̌ := ∥Gzv(I −GGwv)
−1GT̂wd(K̂)∥∞.

We remark that γ̂ is “directly regulatable” by a suitable
choice of K̂, but γ̌ is not because the term dependent on
G is involved. For explanation, let us consider a situation
where γ̂ is made sufficiently small, but γ̌ is not, i.e., γ̂ ≪ γ̌.
Then, (17) implies that ∥Tzd∥∞ ≃ γ̌. This means that ac-
tual control performance may not be satisfactory, even if γ̂
is regulated desirably. Such an undesirable situation possi-
bly arises when the magnitude of G is large. From this ob-
servation, we can see that a large value of γ̌ makes a “bottle-
neck” to perform satisfactory regulation based on the exist-
ing retrofit control. The value of γ̌ evaluates a gap between
∥Tzd∥∞ and γ̂, each of which corresponds to the “actual per-
formance level” of the resultant control system and the “as-
sumed performance level” of the modular control system.
The simplest but not realistic situation for the minimum
gap isG = 0, which leads to the ideal situation where z = ẑ,
or equivalently, ∥Tzd∥∞ = γ̂, i.e., the actual performance
level is equal to the assumed performance level.

2.3 Motivating Example

We give a motivating example that demonstrates the bottle-
neck of the existing retrofit control described in Section 2.2,
towards highlighting the main contribution of this paper.
Consider a network system composed of 36 nodes depicted
in Fig 3. The subnetwork of the first six nodes is supposed
to be a subsystem G of interest, and the remaining part is
supposed to be its unknown environment G. Let I and I
denote the label sets corresponding to G and G, i.e.,

I = {1, 2, . . . , 6}, I = {7, 8, . . . , 36}.

Furthermore, let Ni denote the label set corresponding to
the set of nodes such that they are adjacent to the ith node
and involved in I. In a similar fashion, let Ni denote the
label set of the other adjacent nodes involved in I. With
this notation, for each i ∈ I, the node dynamics is given as

Miθ̈i +Diθ̇i +
∑
j∈Ni

Kij(θj − θi) + vi = ui + di (18)

where θi denotes the angular state, ui denotes the control
input, di denotes the disturbance input, and

vi =
∑
j∈N i

Kij(θj − θi) (19)

denotes the interconnection signal from the environment.
The node dynamics of the environment is given in the same
fashion without the terms of ui and di. The second-order os-
cillator network (18) can be regarded as a mechanical ana-
log of synchronous generators [Ishizaki et al., 2018a]. In the
context of power system modeling, the interconnection sig-
nal vi in (19) can be viewed as the power flow between the
subsystem and its environment. The three interconnection
links are depicted by the dotted lines in Fig 3.

In the following simulation, we set all the inertia constants
and damping constants as Mi = 1 and Di = 0.2. Further-
more, we set the coupling constants inside the subsystem
and inside the environment uniformly as Kij = 5 for all

j ∈ Ni where i ∈ I, and Kij = 5 for all j ∈ Ni where

i ∈ I. The coupling constants between the subsystem and
environment are to be varied as a parameter kc, i.e.,

Kij = kc, ∀j ∈ Ni; i ∈ I. (20)

For simplicity, the symmetry Kij = Kji is assumed.

For retrofit controller design, the control input and the dis-
turbance input are assigned as

u = (ui)i∈{2,3,4}, d = (di)i∈{1,2,3},

respectively. The measurement output and the evaluation
output are assigned as

y = (θi, θ̇i)i∈{2,3,4}, z = (θ̇i)i∈{1,2,...,6},

respectively. In addition to y, the interconnection signals

v = (vi)i∈{1,5,6}, w = (θi)i∈{1,5,6}

are assumed to be measurable. We remark that only the
local model parameters Kij for (i, j) ∈ I × I and Mi, Di

for i ∈ I are assumed to be available. The entire network
system is originally stable for any nonnegative value of kc in
(20). Though its system matrix has a single zero eigenvalue,
it does not matter because the corresponding eigenspace is
unobservable from the evaluation output z.

For the design of the module controller K̂ in (13), we apply
the standard H∞-control synthesis technique to G, isolated
from G, such that

Jα = sup
d∈L2\{0}

∥(z, αu)∥L2

∥d∥L2

(21)

is minimized where α is a weighting constant for the con-
trol input. Setting α = 0.2, we plot the impulse response of
the resultant control system in Fig. 4, where Figs. 4(a)-(c)
correspond to the cases of kc = 1, kc = 4, and kc = 10, i.e.,
weak coupling, moderate coupling, and strong coupling, re-
spectively. In each top subfigure of Figs. 4(a)-(c), the blue
solid lines show the trajectory of z when the retrofit con-
troller K in (13) is used, the red solid lines show the case
where no controller is used, and the magenta dotted lines
show the case where the output rectifier R is not involved
in the controller, i.e., the module controller K̂ is directly
implemented as a simple decentralized controller

u = K̂

[
y

w

]
. (22)

From these top subfigures, we see that the direct implemen-
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Fig. 4. Resultant control system behavior in response to impulsive disturbance at the first node. (a) Case of weak coupling between
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Fig. 5. Block diagram of extended retrofit control.

tation of K̂ induces the instability of the resultant control
systems even though K̂ is designed to be a stabilizing con-
troller for G. In contrast, the retrofit controller can actually
guarantee the stability of the resultant control system for
all the values of the coupling constant kc.

However, we can also see that the amplitude of z becomes
larger as the coupling between G and G becomes stronger.
This outcome can be explained as follows. The decomposed
outputs ẑ and ž in Fig. 2 are plotted in the middle and the
bottom of Figs. 4(a)-(c), where the blue and red lines corre-
spond to the cases with and without the retrofit controller,
respectively. Note that the actual output z is equal to the
sum of ẑ and ž, the induced gains of which are denoted by
γ̂ and γ̌ in (17), respectively. In fact, the behavior of ẑ is
well controlled, and it is identical for all the values of kc
because the module controller K̂ is designed only with the
information of G, which is not dependent on kc. In contrast,
the magnitude of ž is amplified as kc increases, i.e., as the
gain of G increases. In accordance with this amplification,
the magnitude of the resultant z is also amplified.

As demonstrated here, a small-gain property for G may
be required for satisfactory regulation, though the internal
stability of the resultant control system can be assured for
any possible G. This is mainly because only an “identical”
retrofit controller designed with G is used regardless of the
variation of G. To overcome this drawback, we will develop
a new retrofit control method that can produce the block
diagram in Fig. 5, where we make use of an approximate
model Gapx of the environment G. An important difference

between Fig. 2 and Fig. 5 is that the block of G in the mid-

dle of Fig. 2 is replaced with the block of

∆ := G−Gapx (23)

in Fig. 5. Note that ∆ represents a modeling error because
Gapx represents an approximate model of G. Intuitively, as
making the modeling error ∆ small, we can generally reduce
the amplitude of ž. We remark that the norm bound of ∆
is assumed “not to be assurable” because G is assumed to
be unknown.

3 Theoretical Developments

3.1 Frequency-Domain Analysis: Characterization of Ex-
tended Retrofit Controllers

In this section, we premise that an approximate environ-
ment model has been found in some way, though its mod-
eling accuracy is not assured for retrofit controller design.
Our basic strategy to incorporate such unassured environ-
ment modeling is to regard the feedback of the subsystem G
and the approximate environment modelGapx as a new sub-
system of interest. This corresponds to the situation where
the original preexisting system Fig. 1(a) is equivalently re-
garded as the feedback system in Fig. 6. In particular,

G+ := G+G(w,z,y)vGapx(I −GwvGapx)
−1Gw(v,d,u) (24)

is regarded as a new subsystem of interest and the modeling
error ∆ in (23) as a new environment. In this formulation,
it is interesting to note that the modeling error ∆ can be
viewed as a dynamical component that stabilizes the new
subsystem G+. Clearly, G+ = G holds if Gapx = 0.

In the following discussion, in a manner similar to (2), we
denote submatrices of G+, e.g., by

G+
(y,w)u :=

[
G+

yu

G+
wu

]
, G+

(y,w)d :=

[
G+

yd

G+
wd

]
.

One may think that the existing results in Section 2.2 can be
directly applied as simply replacing G with G+, and G with
∆. However, it is not very clear to see if such a simple re-
placement is valid or not because the interconnection signals
between G+ and ∆ are found to be v−Gapxw and w, which
are different from the original interconnection signals v and
w between G and G. Therefore, we need to carefully discuss
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Fig. 6. An equivalent representation of preexisting system.

how K in the form of (8) should be modified or generalized
in this new formulation of retrofit control. As an answer to
this question, we will show that the set of all retrofit con-
trollers with environment modeling actually coincides with
the set of all retrofit controllers in Proposition 2.2, but has
a much complicated structure.

In the derivation of Proposition 2.2, we started the discus-
sion from the fact that the Youla parameterQ can be factor-
ized as in (10), and then we showed that K̂ in (13) is found
to be a stabilizing controller for G(y,w)u. In what follows,

as a converse direction, we first suppose that K̂ is given as
a stabilizing controller for G+

(y,w)u, and then we will derive

a compatible factorization of Q. To this end, the following
assumption is made.

Assumption 3.1 The approximate model Gapx belongs to

G, i.e., G+ in (24) is internally stable.

Assumption 3.1 is in fact not crucial to prove the resultant
control system stability, as shown in Theorem 3.3 below,
but is used to make the Youla parameterization tractable.
Owing to this assumption, the Youla parameterization of K̂
can be simply written as

K̂ = (I + Q̂G+
(y,w)u)

−1Q̂, Q̂ ∈ RH∞. (25)

This means that K̂ is a stabilizing controller for G+
(y,w)u. As

a generalization of (11), we notice that

G+
(y,w)u = XRG(y,w,v)u (26)

where X, being invertible in RH∞, is defined as

X :=

[
I GyvGapx(I −GwvGapx)

−1

0 (I −GwvGapx)
−1

]
. (27)

Note that X ∈ RH∞ for any Gapx ∈ G. In addition, X = I

if Gapx = 0. Substituting (26) into (25) and multiplying it
by XR from the right side, we have

K̂XR︸ ︷︷ ︸
K

= (I+ Q̂XR︸ ︷︷ ︸
Q

G(y,w,v)u)
−1 Q̂XR︸ ︷︷ ︸

Q

, Q ∈ RH∞, (28)

which gives the Youla parameterization of K such that (10)
holds. We remark that XR : (y, w, v) 7→ (ŷ, ŵ) can be seen
as an extended output rectifier that performs the output
rectification of

ŷ = (y −Gyvv) +GyvGapx(I −GwvGapx)
−1(w −Gwvv),

ŵ = (I −GwvGapx)
−1(w −Gwvv),

(29)

which is a generalization of (12). This derivation enables to
generalize Proposition 2.2 as follows.

Theorem 3.1 Let Assumptions 2.1, 2.2, and 3.1 hold.
Then, K in (8) is an output-rectifying retrofit controller if
and only if

K = K̂XR (30)

where K̂ is a stabilizing controller for G+
(y,w)u, and R andX

are defined as in (9) and (27), respectively. Furthermore, the
block diagram of the resultant control system is depicted as
in Fig. 5, i.e., the entire map Tzd : d 7→ z is given as

Tzd = T̂+
zd(K̂) +Gzv(I −GGwv)

−1∆T̂+
wd(K̂) (31)

where T̂+
zd : d 7→ ẑ and T̂+

wd : d 7→ ŵ denote the transfer
matrices compatible with Fig. 5, given as

T̂+
zd(K̂) := G+

zd +G+
zuK̂(I −G+

(y,w)uK̂)−1G+
(y,w)d

T̂+
wd(K̂) := G+

wd +G+
wuK̂(I −G+

(y,w)uK̂)−1G+
(y,w)d,

(32)

and ∆ is defined as in (23).

Proof We see that (25) is equivalent to (28) because X
is invertible and R is right invertible. Thus, all output-
rectifying retrofit controllers in the form of (8) can be writ-
ten as (30). Next, let us prove (31). Recall that, for any
output-rectifying retrofit controller, the entire map is given
as (16). In a similar manner to (26), G+

(y,w)d = XRG(y,w,v)d

is confirmed. Thus,

Tzd = Gzd +GzuQ̂G+
(y,w)d

+Gzv(I −GGwv)
−1G(Gwd +GwuQ̂G+

(y,w)d).

On the other hand, the input-to-output map of Fig. 5, de-
noted here by T ′

zd : d 7→ z, is given as

T ′
zd = G+

zd +G+
zuQ̂G+

(y,w)d

+Gzv(I −GGwv)
−1∆(G+

wd +G+
wuQ̂G+

(y,w)d).

For the identity of Tzd = T ′
zd, it suffices to show that

Gzd +Gzv(I −GGwv)
−1GGwd

= G+
zd +Gzv(I −GGwv)

−1∆G+
wd

(33)

and

Gzu +Gzv(I −GGwv)
−1GGwu

= G+
zu +Gzv(I −GGwv)

−1∆G+
wu.

Because both equalities can be proven in a similar manner,
we only prove (33). Subtracting the left-hand side of (33)
from the right-hand side, we have

Gzv

[{
I − (I −GGwv)

−1︸ ︷︷ ︸
−(I−GGwv)−1GGwv

}
Gapx(I −GwvGapx)

−1

+(I −GGwv)
−1G

{
(I −GwvGapx)

−1 − I︸ ︷︷ ︸
GwvGapx(I−GwvGapx)−1

}]
Gwd = 0.

The relations indicated by the underbraces are proven by

(I + PK)−1 = I + (I − PK)−1PK (34)
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Hence, the claim is proven. □
Theorem 3.1 provides another representation of all output-
rectifying retrofit controllers in which the approximate en-
vironment model is involved as a tuning parameter. The
resultant retrofit controller is specifically found as

u = K̂y

{
(y −Gyvv)

+GyvGapx(I −GwvGapx)
−1(w −Gwvv)

}
+ K̂w(I −GwvGapx)

−1(w −Gwvv).

It is not trivial to see that the control system in Fig. 1(b)
with such a complicated controller can be equivalently ex-
pressed as the cascade block diagram in Fig. 5.

The feedback structure in the retrofit controller is encap-
sulated as the invertible transfer matrix “X” involved in
(30), which gives a clear bridge between the new retrofit
controller in Theorem 3.1 and the existing one in Proposi-
tion 2.2. In fact, those retrofit controllers have a one-to-one
correspondence, i.e., K̂ is a stabilizing controller for G+

(y,w)u

in the new retrofit control formulation if and only if K̂X
is a stabilizing controller for G(y,w)u in the existing formu-
lation. One can imagine that such an idea of factorizing a
stabilizing controller for G(y,w)u as in the particular form

of “K̂X” is generally difficult to devise in the framework of
the existing retrofit control.

Owing to this special controller factorization, the extended
retrofit controller gains higher flexibility in design as com-
pared with the existing formulation. In the existing one, the
Youla parameter of all output-rectifying retrofit controllers
is expressed as Q = Q̂R where we can choose Q̂ as “any”
stable transfer matrices. This means that even the dimen-
sion of Q̂ can be arbitrary in general. However, a standard
controller design technique, such as the H∞-control synthe-
sis, generally produces a stabilizing controller K̂, or equiv-
alently Q̂, only with a dimension comparable to that of
G(y,w)u. This is as an implicit limitation to find a possibly
better controller. In contrast, the new retrofit control for-
mulation provides an additional degree of freedom to find
out a higher-dimensional Q̂ by tuning the parameter Gapx,
whose dimension can be selected arbitrarily.

Another practical insight gained from Theorem 3.1 is the
fact that the gap between the actual performance level of the
resultant control system and the assumed performance level
of the modular control system can be reduced if accurate
environment modeling is performed. In particular, we can
easily have a generalization of Proposition 2.3 as follows.

Theorem 3.2 With the same notation as that in Theo-
rem 3.1, the resultant control performance is bounded as

|γ̌+ − γ̂+| ≤ ∥Tzd∥∞ ≤ γ̂+ + γ̌+ (35)

where the induced gains of ẑ and ž are given as

γ̂+ :=∥T̂+
zd(K̂)∥∞, γ̌+ :=∥Gzv(I −GGwv)

−1∆T̂+
wd(K̂)∥∞.

The significance of Theorem 3.2 can be explained as fol-
lows. Because the modeling error ∆ is linearly involved in
γ̌+, we can expect that γ̌+ decreases if the magnitude of
∆ is made small. This means that, if the modeling error ∆
is made sufficiently small, then we have ∥Tzd∥∞ ≃ γ̂+, i.e.,
the actual performance level is almost equal to the assumed

performance level. In particular, we have ∥Tzd∥∞ = γ̂+ if
∆ = 0. Note that the assumed performance level γ̂+ can be
regulated by designing K̂ appropriately. More specifically,
using a robust control technique, we can design K̂ that min-
imizes ∥T̂+

zd(K̂)∥∞ while keeping the value of ∥T̂+
wd(K̂)∥∞

bounded. Theorem 3.2 generally states that, if the assumed
performance level as well as the modeling error are made
small, then a better performance level can be attained.

It should also be noted that the assumed performance level
γ̂+ is not necessarily improved as themodeling accuracy ofG
is improved. In general, it depends on whether G is cooper-
ative or not from the viewpoint of controlling the subsystem
G of interest. In particular, if G is cooperative, we should
explicitly make use of the positive relationship between G
and G. In this case, γ̂+ tends to be improved as the model-
ing accuracy is improved, even under an admissible amount
of input energy. On the other hand, if G is not cooperative,
improving its modeling accuracy may not lead to improved
γ̂+ because G can negatively affect the control performance
of G. We again emphasize that, regardless of whether G is
cooperative or not, improving the modeling accuracy gener-
ally reduces the gap between the assumed performance level
γ̂+ and the actual performance level ∥Tzd∥∞. This gap re-
duction is crucial to surely improve the actual performance
level with the modular design of retrofit controllers.

Remark We again remark that the proposed retrofit con-
trol has a clear distinction from robust control. One may
think that the modeling error ∆ can be handled as a model
uncertainty in robust control. However, because the envi-
ronmentG is assumed here to be unknown, the norm bound
of ∆ is “not assurable” in the above formulation. Gener-
ally, such an unassured modeling error is not considered in
a standard robust control setting. In contrast, the proposed
retrofit control can always ensure the internal stability of the
resultant control system, without the assurance of modeling
accuracy. The stability assurance is only reliant on the pre-
existing system stability as premised in Definition 2.1. Note
that the resultant controller is also a retrofit controller, i.e.,
it can keep the interconnection transfer matrix invariant as
explained in Section 2.1. This property would be counterin-
tuitive because the proposed retrofit controller is designed
based on the feedback model of G and Gapx.

3.2 Time-Domain Analysis: State-Space Realization of Ex-
tended Retrofit Controllers

For simplicity of the Youla parameterization, we have as-
sumed in Theorem 3.1 that the subsystem G is stable, and
the approximate environment model Gapx belongs to G.
However, these assumptions are, in fact, not crucial to prove
the internal stability of the resultant control system. To
prove this, we derive a tractable state-space realization of
K in (30). Furthermore, we show that the block diagram in
Fig. 5 can be understood as a particular state-space realiza-
tion of the entire control system obtained by a coordinate
transformation. This analysis clarifies the fact that the sum
of the states of G and G(w,z)v in Fig. 5 is equal to that of G

in Fig. 1(b). In addition, the state of Gzv(I − GGwv)
−1 in

(31) corresponds to that of the output rectifier XR in (30).

We describe a time-domain representation of the preexisting
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system (1) by

G : v = Gw, G :


ẋ = Ax+Bu+ Lv +Wd

w = Γx

z = Sx

y = Cx.

(36a)

For simplicity of description, we suppose here that G is a
static map, i.e., it is a matrix. We remark that the subse-
quent discussion can be easily extended to the case of dy-
namical environments in such a way that G is regarded as
the convolution operator associated with G, i.e.,

v(t) =

∫ t

0

g(t− τ)w(τ)dτ

where g(t) is the impulse response of G. The other bold

face symbols Gapx, K̂y, and K̂w that will appear in the
subsequent discussion are also supposed to be static, just for
simplicity of description, while those can also be dynamic.

The premise of G ∈ G, i.e., the internal stability of (1), in
Section 3.1 can be rephrased as the stability of

Gpre :


ẋ = (A+ LGΓ )x+Bu+Wd

z = Sx

y = Cx,

(36b)

which is a compact description of (36a). As a time-domain
analog of Definition 2.1, we introduce the following termi-
nology.

Definition 3.1 For the preexisting system Gpre in (36b),
define the set of all admissible environments as

G :=
{
G : A+ LGΓ is stable

}
. (37)

Under Assumption 2.2, an output feedback controller

u = K(y, w, v), (38)

where K denotes a dynamical map, is said to be a retrofit
controller if the resultant control system that is composed
of (36) and (38) is internally stable for any possible envi-

ronment G ∈ G .

Based on this definition, a state-space realization of the ex-
tended retrofit controller is given as follows. We again re-
mark that Assumptions 2.1 and 3.1, i.e., the assumptions
on the stability of G and G+, are not required to prove the
internal stability of the resultant control system.

Theorem 3.3 Let Assumption 2.2 hold. For any approxi-
mate environment model Gapx and any feedback gains K̂y

and K̂w such that

A+ LGapxΓ +B(K̂yC + K̂wΓ ) (39)

is stable, an output feedback controller

K :

{
˙̂x = Ax̂+ L

{
v −Gapx(w − Γ x̂)

}
u = K̂y(y − Cx̂) + K̂w(w − Γ x̂)

(40)

is a retrofit controller.

Proof We first prove that (40) is a state-space realization

of K in (30). The time-domain representation of K̂ in (30)

is now given as

K̂ : u = K̂y ŷ + K̂wŵ. (41)

The stability of (39) corresponds to the fact that the feed-

back gains K̂y and K̂w are chosen such that (41) stabilizes
the feedback system composed of

Gapx : v̂ = Gapxŵ, G(y,w)u :


˙̂
ξ = Aξ̂ +Bu+ Lv̂

ŵ = Γ ξ̂

ŷ = Cξ̂,

(42)
which is a time-domain representation of G+

(y,w)u. What re-

mains to be shown is that

XR :


˙̂x = Ax̂+ L

{
v −Gapx(w − Γ x̂)

}
ŷ = y − Cx̂

ŵ = w − Γ x̂

(43)

is a realization of XR : (y, w, v) 7→ (ŷ, ŵ), i.e., the output
rectifier given in the frequency domain as

XR =

[
I Gyv(I−GapxGwv)

−1Gapx −Gyv(I−GapxGwv)
−1

0 (I−GwvGapx)
−1 −(I−GwvGapx)

−1Gwv

]
.

The block diagram of (43) can be depicted as in Fig. 7. From
this diagram, we can verify that

ŷ = y +Gyv(I −GapxGwv)
−1Gapxw

−Gyv(I −GapxGwv)
−1v

ŵ = (I −GwvGapx)
−1w − (I −GwvGapx)

−1Gwvv

where we have used (34) for the calculation of ŵ. Thus, (40)
is proven to be a state-space realization of K in (30).

In what follows, we show that the resultant control system
composed of (36) and (40) is internally stable for anyG ∈ G .
To this end, we apply the coordinate transformation of

ξ̂ = x− x̂, ξ̌ = x̂. (44)

Then, we see that the entire control system is given as the
cascade connection of the upstream system

˙̂
ξ =

{
A+ LGapxΓ +B(K̂yC + K̂wΓ )

}
ξ̂ +Wd,

the stability of which is equivalent to that of the closed-loop
system of (41) and (42), and the downstream system

˙̌ξ = (A+ LGΓ )ξ̌ + L(G−Gapx)Γ ξ̂, (45)

the stability of which is equivalent to G ∈ G . Thus, the
control system composed of (36) and (40) is equivalent to

Tzd :


˙̂
ξ =

{
A+ LGapxΓ +B(K̂yC + K̂wΓ )

}
ξ̂ +Wd

˙̌ξ = (A+ LGΓ )ξ̌ + L(G−Gapx)Γ ξ̂

z = S(ξ̂ + ξ̌).

(46)

Hence, the internal stability is proven for any G ∈ G . □

Theorem 3.3 provides a tractable state-space realization of
the retrofit controller in Theorem 3.1. We remark that The-
orem 3.3 gives only a “sufficient” condition to prove that
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Fig. 7. Block diagram of extended output rectifier.

10

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

:

:

:

:

Fig. 8. Modeling errors versus coupling constants between sub-
system and environment.

K with the structure of (40) is a retrofit controller, without
imposing Assumptions 2.1 and 3.1. However, it is generally
difficult to show by this time-domain analysis if the struc-
ture of K in (40) is “necessary” or not. Such necessity of
the controller structure is shown by the frequency-domain
analysis in Theorem 3.1, on the premise of Assumptions 2.1
and 3.1 making the Youla parameterization tractable. To
prove the necessity of the retrofit controller structure with-
out Assumptions 2.1 and 3.1 is left as future work.

We see from (44) that the state ξ̌ in (46), which represents
the state of Gzv(I −GGwv)

−1 in (31), is equal to x̂ in (40),
i.e., the state of the output rectifier XR in (30). There-
fore, monitoring the output signal Sx̂, which is equal to ž in
Fig. 5, we can estimate the accuracy of approximate envi-
ronment modeling in online operation. This is based on the
fact that the magnitude of ž is smaller if so is ∆.

4 Numerical Experiments

We again consider the oscillator network in Section 2.3.
Just for simplicity of demonstration, we produce approxi-
mate environment models applying the balanced truncation
[Moore, 1981], which is well known as a standard model re-
duction technique based on the controllability and observ-
ability Gramians. In practice, the balanced truncation is not
directly applicable because a complete model of the envi-
ronment is supposed to be unknown. However, it is shown in
[Kashima, 2016] that such an energy-based model reduction
method can be understood as a special case of data-based
model reduction methods, e.g., proper orthogonal decom-
position (POD), with sufficient data collection of systems
driven by stochastic noise. Based on this fact, we consider
simulating a data-rich situation for environment modeling,
where an approximate models produced by the balanced
truncation is supposed to be an ideally identified model.

Varying the dimension of approximate environment models,
denoted by napx, we plot in Fig. 8 the resultant modeling

errors ∥G−Gapx∥∞ versus the coupling constant kc. From
this figure, we see that modeling errors decrease as model

dimensions increase, and they increase as coupling constants
increase. The case of napx = 0 corresponds to the modeling

of the static characteristics of G, which is represented by
the static feedback of θi in (19). We remark that even the
8-dimensional model is not very accurate because it has
more than 30% worst-case error when kc = 10. As seen
here, an approximate model with moderate dimensions may
have a large modeling error. We remark that the magnitude
of modeling errors is not assurable in practice when the
environment is unknown and variant.

Varying the dimension of approximate models, we plot the
resultant control performance versus the coupling constant
in Fig. 9. The black lines with squares represent the ac-
tual control performance level ∥Tzd∥∞, the blue lines with
triangles represent the assumed performance level γ̂+, the
blue lines with inverted triangles represent the performance
gap γ̌+, the magenta lines with diamonds correspond to the
cases without the output rectifier, and the red dotted lines
correspond to the cases without controllers. Figs. 9(a1)-(a4)
correspond to the cases where the weighting constant α in
(21) is given as 0.2, while Figs. 9(b1)-(b4) correspond to the
cases where α = 0.01. We remark that the magenta lines
with diamonds frequently fall out because the resultant con-
trol systems become unstable. From the set of these plots, we
obtain the following observations. (1) The proposed retrofit
controller can assure the resultant control system stability
for all the cases, while the simple controller not involving
the output rectifier induces the system instability for al-
most all cases where no environment model is used and the
static model is used. (2) When the 2-dimensional model is
used, both retrofit and simple controllers attain an actual
performance level comparable to the assumed performance
level provided that the coupling constant is less than about
4. (3) When the 8-dimensional model is used, the retrofit
controller and the simple controller attain comparable per-
formance levels for all coupling constants within 0 to 10.

As demonstrated here, the stability of resultant control sys-
tems is always assuredwithout requiring the assurance of en-
vironment modeling accuracy, and the resultant control per-
formance can be improved as improving the accuracy of en-
vironment modeling. These are the major advantages of the
proposed retrofit control. For reference, we plot the impulse
response of the resultant control system in Fig. 10, where
Figs. 10(a)-(c), respectively, correspond to the cases where
the static environment model, the 2-dimensional model, and
8-dimensional model are used in the proposed retrofit con-
trol. We set the parameters as kc = 10 and α = 0.2, which
are the same as those in Fig. 4(c), obtained by the exist-
ing retrofit control. From these results, we can confirm the
significance to incorporate approximate environment mod-
eling into retrofit control.

5 Concluding Remarks

In this paper, we developed a novel retrofit control method
with approximate environment modeling. The major advan-
tages of the proposed retrofit control are summarized as fol-
lows. The stability of the resultant control system is robustly
assured regardless of not only the stability of approximate
environment models, but also the magnitude of modeling
errors, provided that the network system before implement-
ing retrofit control is originally stable. In addition, the re-
sultant control performance can be regulated by adjusting
the accuracy of approximate environment modeling. These
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weighting constant are set as kc = 10 and α = 0.2, comparable to Fig. 4(c). (a) Case with static environment model. (b) Case with
2-dimensional environment model. (c) Case with 8-dimensional environment model.

advantages have a good compatibility with the modeling of
unknown environments because the accuracy of identified
models may neither be reliable nor assurable in practice,
while it can be expected to improve by suitable learning tri-
als. Such an unassured modeling error is not generally con-
sidered in a standard robust control setting. Incorporating a
closed-loop system identification method for online environ-
ment modeling would be an interesting direction of future
work. In addition, it is meaningful to conduct a more de-
tailed analysis in the case where multiple retrofit controllers
are simultaneously implemented in respective subsystems
based on individual environment modeling.
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D. D. Šiljak and A. I. Zečević. Control of large-scale systems:
Beyond decentralized feedback. Annual Reviews in Control,
29(2):169–179, 2005.

J. Stoustrup. Plug & play control: Control technology towards
new challenges. European Journal of Control, 15(3-4):311–
330, 2009.

K. T. Ulrich. Product design and development. McGraw Hill
Higher Education, 2003.

X. Wang and N. Hovakimyan. Distributed control of uncertain
networked systems: A decoupled design. Automatic Control,
IEEE Transactions on, 58(10):2536–2549, 2013.

J. C. Willems. Dissipative dynamical systems part I: General
theory, part II: Linear systems with quadratic supply rates.

Archive for Rational Mechanics and Analysis, 45(5):321–393,
1972.

D. Youla, H. Jabr, and J. Bongiorno. Modern Wiener-Hopf de-
sign of optimal controllers–Part II: The multivariable case.
Automatic Control, IEEE Transactions on, 21(3):319–338,
1976.

K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control.
Prentice Hall, 1995.

12


