Workshop COOPS 2017 in Milano

Bidding System Design for Multiperiod Electricity Markets

Takayuki Ishizaki (Tokyo Institute of Technology)

POWER

M. Koike (Tokyo Uni of MST) N. Yamaguchi (Tokyo Uni of Sci) J. Imura (Tokyo Tech)

Problem formulation

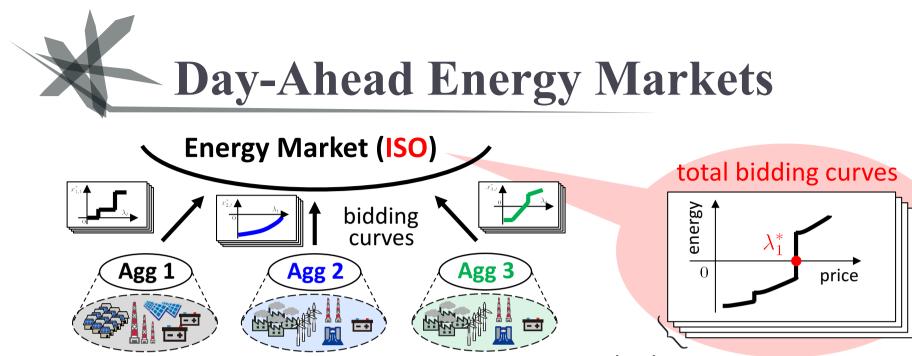
Part I: What is bidding system design?

- relation between market clearing problem and convex optimization
- relation between **bidding curves** and **cost functions**
- difficulty in bidding system design for multiperiod markets

Part II: How to design a bidding system for multiperiod markets?

- basis transformation compatible with energy shift market
- sequential market clearing scheme
- numerical examples

An approximate solution method



Example 2 time spots, 3 aggregators

multiple spots

	Market Results	Aggregator 1 (producer)	Aggregator 2 (consumer)	Aggregator 3 (prosumer)	Clearing Price			
	Spot 1 (AM)	150 [kWh]	-250 [kWh]	100 [kWh]	10 [yen/kWh]			
	Spot 2 (PM)	100 [kWh]	-50 [kWh]	-50 [kWh]	5 [yen/kWh]			
Decision variables: Balanced		$x_1^* = \begin{pmatrix} 150\\100 \end{pmatrix}$	$x_2^* = \begin{pmatrix} -250\\ -50 \end{pmatrix}$	$x_3^* = \begin{pmatrix} 100\\ -50 \end{pmatrix}$	$\lambda^* = \begin{pmatrix} 10\\5 \end{pmatrix}$			
Market clearing: Find "desirable" $\lambda^* \& (x^*_{\alpha})_{\alpha \in \mathcal{A}}$ such that $\sum_{\alpha \in \mathcal{A}} x^*_{\alpha} = 0$								

Market Clearing as Optimization

Market Results	Aggregator 1 (producer)	Aggregator 2 (consumer)	Aggregator 3 (prosumer)	Clearing Price	
Spot 1 (AM)	150 [kWh]	-250 [kWh]	100 [kWh]	10 [yen/kWh]	
Spot 2 (PM)	100 [kWh]	x_1^st -50 [kWh]	-50 [kWh]	5 [yen/kWh]	λ^*

Profit of Agg
$$\alpha$$
: $J_{\alpha}(x_{\alpha}^*; \lambda^*) = \langle \lambda^*, x_{\alpha}^* \rangle - F_{\alpha}(x_{\alpha}^*)$ (selfish objective function)incomecost

✓ See later how to determine $F_{\alpha}(x_{\alpha})$ (especially for prosumer!)

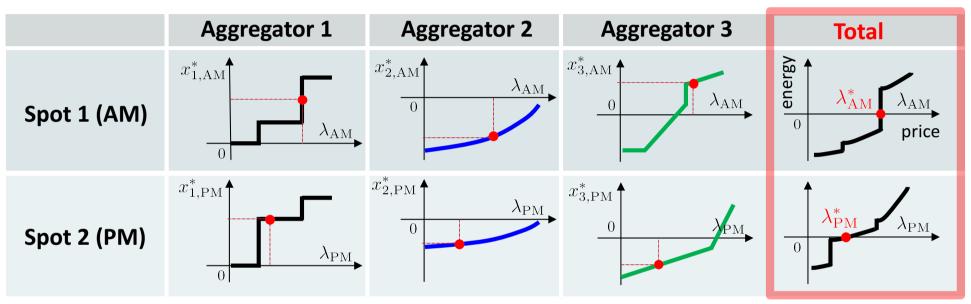
Social profit:
$$\sum_{\alpha \in \mathcal{A}} J_{\alpha}(x_{\alpha}^{*}; \lambda^{*}) = \left\langle \lambda^{*}, \sum_{\alpha \in \mathcal{A}} x_{\alpha}^{*} \right\rangle - \sum_{\alpha \in \mathcal{A}} F_{\alpha}(x_{\alpha}^{*})$$
social cost (social objective function)

Social profit maximization = Social cost minimization $\min_{(x_{\alpha})_{\alpha \in \mathcal{A}}} \sum_{\alpha \in \mathcal{A}} F_{\alpha}(x_{\alpha}) \quad \text{s.t.} \quad \sum_{\alpha \in \mathcal{A}} x_{\alpha} = 0$

$$\begin{cases} \text{primal:} (x_{\alpha}^*)_{\alpha \in \mathcal{A}} \\ \text{dual:} \quad \lambda^* \\ 4/28 \end{cases}$$

Bidding Curves for Market Clearing

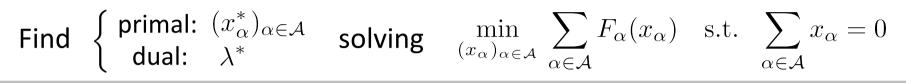
Suppose that bidding curves for each spot are submitted to ISO



ISO can find each clearing price and balancing amounts as crossing points of (total) bidding curves

But... Are such crossing points really solutions of social cost minimization: $\min_{(x_{\alpha})_{\alpha \in \mathcal{A}}} \sum_{\alpha \in \mathcal{A}} F_{\alpha}(x_{\alpha})$ s.t. $\sum_{\alpha \in \mathcal{A}} x_{\alpha} = 0$??

Socially optimal market clearing problem:

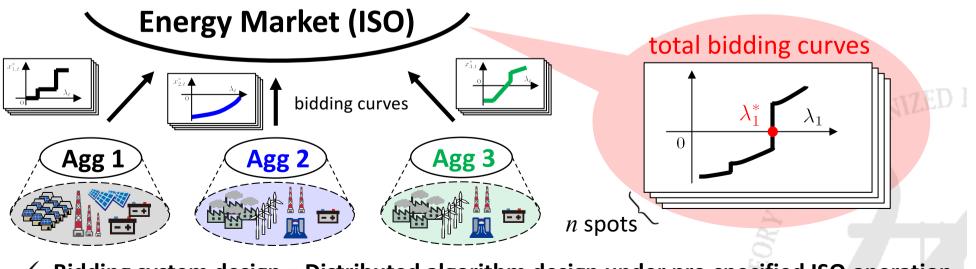


Q1: What is a <u>reasonable</u> cost function $F_{\alpha}(x_{\alpha})$ **??**

✓ Prosumption x_{α} should be a **mixture of generators, batteries, renewables** etc

Q2: Is it possible to construct bidding curves from $F_{\alpha}(x_{\alpha})$??

✓ Social cost should be minimized with $(x^*_{\alpha})_{\alpha \in A}$ and λ^* found as crossing-points



✓ Bidding system design = Distributed algorithm design under pre-specified ISO operation

Part I: What is bidding system design?

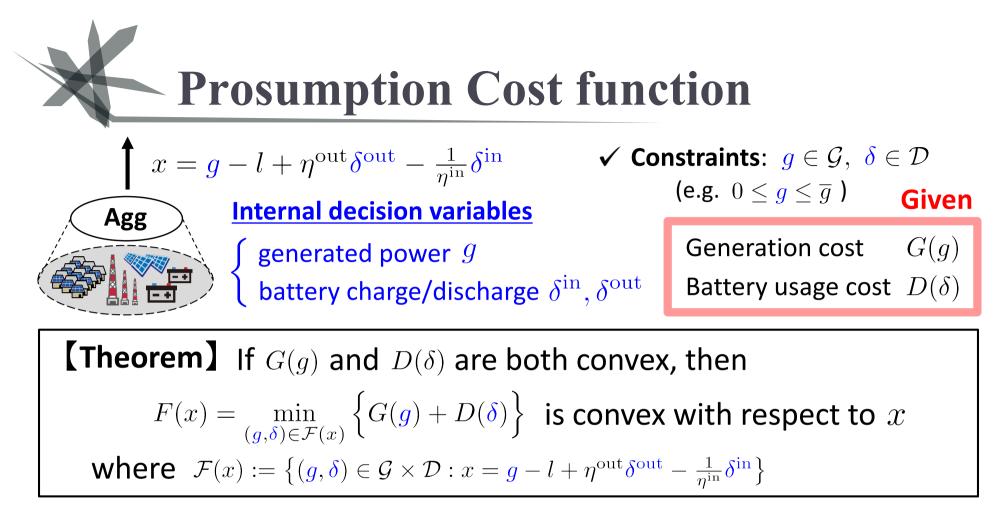
- relation between market clearing problem and convex optimization
- relation between **bidding curves** and **cost functions**
- difficulty in bidding system design for multiperiod markets

Part II: How to design a bidding system for multiperiod markets?

- basis transformation compatible with energy shift
- sequential clearing scheme for energy shift markets
- numerical examples

Prosumption Cost function $x = g - l + \eta^{\text{out}} \delta^{\text{out}} - \frac{1}{n^{\text{in}}} \delta^{\text{in}}$ ✓ Constraints: $g \in G$, $\delta \in D$ (e.g. $0 \leq \underline{q} \leq \overline{q}$) Given **Internal decision variables** Agg G(g)Generation cost $\begin{cases} \text{generated power } g \\ \text{battery charge/discharge } \delta^{\text{in}}, \delta^{\text{out}} \end{cases}$ Battery usage cost $D(\delta)$ **Theorem** If G(g) and $D(\delta)$ are both convex, then $F(x) = \min_{\substack{(q,\delta) \in \mathcal{F}(x)}} \left\{ G(q) + D(\delta) \right\}$ is convex with respect to x where $\mathcal{F}(x) := \{(g, \delta) \in \mathcal{G} \times \mathcal{D} : x = g - l + \eta^{\text{out}} \delta^{\text{out}} - \frac{1}{n^{\text{in}}} \delta^{\text{in}} \}$ **Example** 2 time spots (AM/PM) Constants: $l_{AM} = 50$, $l_{PM} = 10$, $\eta^{out} = \eta^{in} = 1$ $F(x_{\rm AM}, x_{\rm PM}) = \min_{q, \delta} \left\{ G(g) + D(\delta) \right\} \quad \text{s.t.} \quad \begin{pmatrix} x_{\rm AM} \\ x_{\rm PM} \end{pmatrix} = \begin{pmatrix} g_{\rm AM} - 50 + \delta_{\rm AM}^{\rm out} - \delta_{\rm AM}^{\rm in} \\ g_{\rm PM} - 10 + \delta_{\rm PM}^{\rm out} - \delta_{\rm PM}^{\rm in} \end{pmatrix}$

 $f(x_{AM}, x_{PM}) = \lim_{g, \delta} \left\{ G(g) + D(\theta) \right\} \text{ s.t. } \left(x_{PM} \right) = \left(g_{PM} - 10 + \delta_{PM}^{\text{out}} - \delta_{PM}^{\text{in}} \right)$ $(x = 0 : \text{supply-demand balance inside aggregator} \qquad g, \delta \text{ not unique!}$ (x = 0 : supply-demand balance inside aggregator (x = 0 : supply-demand balance inside aggregator



Uncertain renewables can be handled as robust optimization like:

$$F(x) = \max_{p \in \mathcal{P}} \min_{(g,\delta) \in \mathcal{F}(x,p)} \left\{ G(g) + D(\delta) \right\}$$

where \mathcal{P} is a scenario set of renewable generation

on-going work

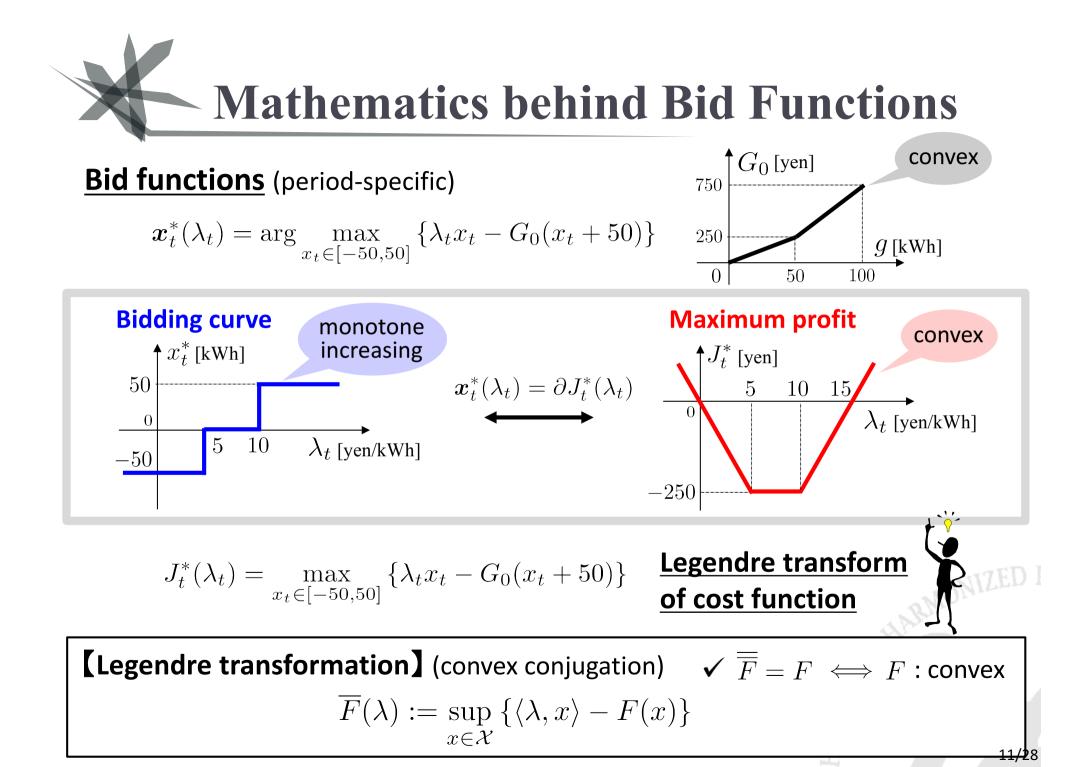
(More interesting to see how magnitude of uncertainty affects economics!)

Derivation of Bid Functions

Example 2 time spots
$$l_{AM} = 50$$
, $l_{PM} = 50$
Generators & loads: $\begin{pmatrix} x_{AM} \\ x_{PM} \end{pmatrix} = \begin{pmatrix} g_{AM} - l_{AM} \\ g_{PM} - l_{PM} \end{pmatrix}$
Spec of generators: $\begin{cases} (A) \ 0 \sim 50 \ [kWh] \ 5 \ [yen/kWh] \\ (B) \ 0 \sim 50 \ [kWh] \ 10 \ [yen/kWh] \end{cases}$

Generation cost: $G(g_{AM}, g_{PM}) = G_0(g_{AM}) + G_0(g_{PM})$ additively decomposable Feasible generator outputs: $0 \le g_{AM} \le 100$ $0 \le g_{PM} \le 100$ disjoint

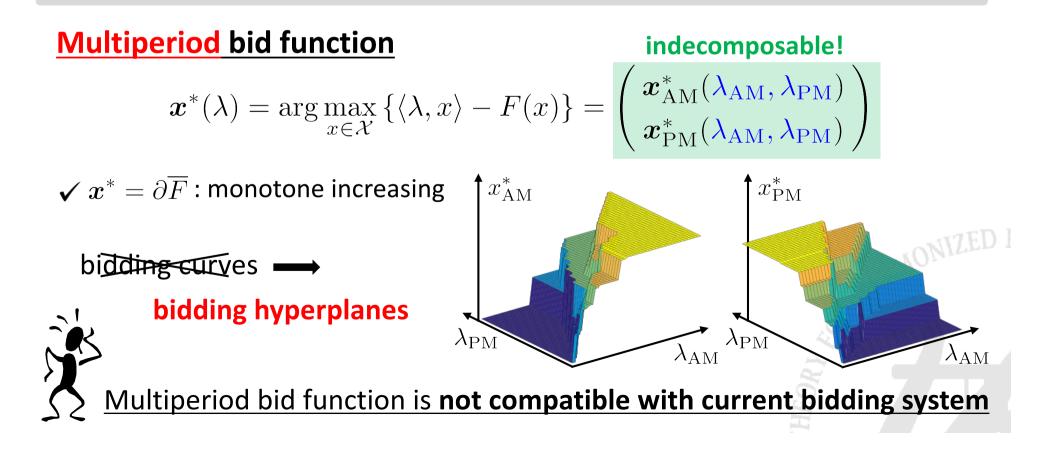
$$\max_{x \in \mathcal{X}} J(x; \lambda) = \max_{x_{AM} \in [-50, 50]} \{\lambda_{AM} x_{AM} - G_0(x_{AM} + 50)\} \text{ decomposable!} \\ + \max_{x_{PM} \in [-50, 50]} \{\lambda_{PM} x_{PM} - G_0(x_{PM} + 50)\} \\ \frac{\text{Bid functions}}{x_t^*(\lambda_t) = \arg \max_{x_t \in [-50, 50]} \{\lambda_t x_t - G_0(x_t + 50)\}, \ t \in \{AM, PM\} \\ \end{bmatrix}$$



Generation cost: $G(g_{AM}, g_{PM}) = G_0(g_{AM}) + G_0(g_{PM})$

Feasible generator outputs: $0 \le g_{AM} \le 100$ $0 \le g_{PM} \le 100$

Ramp rate limit (Added): $-10 \le g_{AM} - g_{PM} \le 10$ **temporally correlated!**



Separability of Multiperiod Bid Function

<u>Example</u> Battery aggregator $\begin{pmatrix} x_{\rm AM} \\ x_{\rm PM} \end{pmatrix} = \begin{pmatrix} \delta_{\rm AM}^{\rm out} - \delta_{\rm AM}^{\rm in} \\ \delta_{\rm PM}^{\rm out} - \delta_{\rm PM}^{\rm in} \end{pmatrix}$ 500 U [yen] 5 [yen/kWh] -100SOC constraints: $\delta \in \mathcal{D}_{SOC}$ 100 *s* [kWh] not disjoint! 10 [yen/kWh] Cost function based on utility of final SOC: 1000not additively $D(\delta) = -U(s_{\text{fin}}(\delta)) \quad s_{\text{fin}}(\delta) = s_0 + \sum (\delta_t^{\text{in}} - \delta_t^{\text{out}})$ decomposable! $t \in \{AM, PM\}$ [Lemma] The multiperiod bid function is *separate* iff the cost function is *additively decomposable* and its domain is *disjoint*

i.e.
$$x^*(\lambda) = \begin{pmatrix} x_1^*(\lambda_1) \\ \vdots \\ x_n^*(\lambda_n) \end{pmatrix} \iff F(x) = \sum_{t=1}^n F_t(x_t), x \in \mathcal{X}_1 \times \cdots \times \mathcal{X}_n.$$

Negative fact!! Traditional bidding curves available just in very special cases

Brief Summary: Bidding System Design

Socially optimal market clearing :

$$\min_{(x_{\alpha})_{\alpha\in\mathcal{A}}} \sum_{\alpha\in\mathcal{A}} F_{\alpha}(x_{\alpha}) \quad \text{s.t.} \quad \sum_{\alpha\in\mathcal{A}} x_{\alpha} = 0$$

✓ Bidding system design = Distributed algorithm design under pre-specified ISO operation

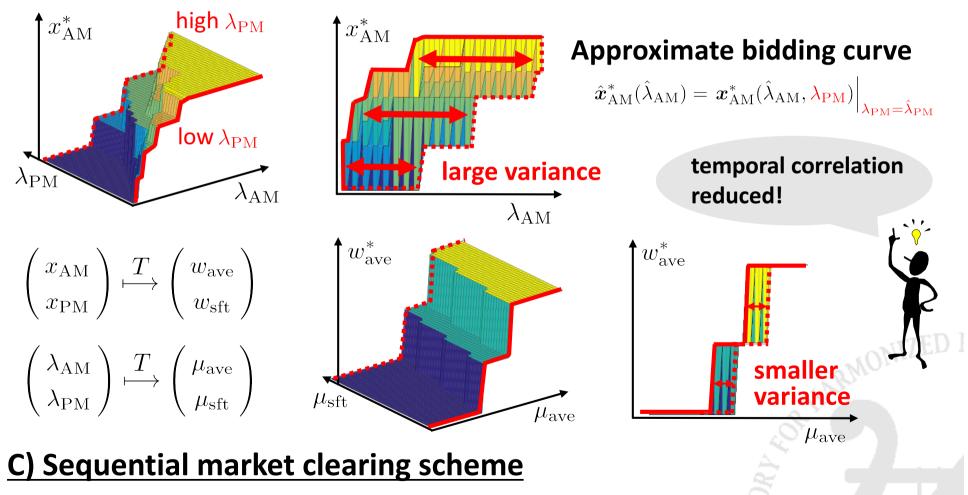
$$\begin{array}{l} \left\{ \textbf{Theorem} \right\} \quad F(x) = \min_{(g,\delta) \in \mathcal{F}(x)} \left\{ G(g) + D(\delta) \right\} \text{ is convex} \\ \text{where } \quad \mathcal{F}(x) := \left\{ (g,\delta) \in \mathcal{G} \times \mathcal{D} : x = g - l + \eta^{\text{out}} \delta^{\text{out}} - \frac{1}{\eta^{\text{in}}} \delta^{\text{in}} \right\} \\ \hline \textbf{Multiperiod bid function:} \\ x^*(\lambda) = \arg \max_{x \in \mathcal{X}} \left\{ \langle \lambda, x \rangle - F(x) \right\} \\ \checkmark \text{ monotone increasing } x^* = \partial \overline{F} : \mathbb{R}^n \to \mathbb{R}^n \end{array}$$

Bidding system design for multiperiod markets is not so simple!! 14/28

- Part I: What is bidding system design?
 - relation between market clearing problem and convex optimization
 - relation between bidding curves and cost functions
 - difficulty in bidding system design for multiperiod markets
- Part II: How to design a bidding system for multiperiod markets?
 - basis transformation compatible with energy shift
 - sequential clearing scheme for energy shift markets
 - numerical examples

A) Basis transformation towards better approximation

B) Approximation of bidding hyperplanes to bidding curves

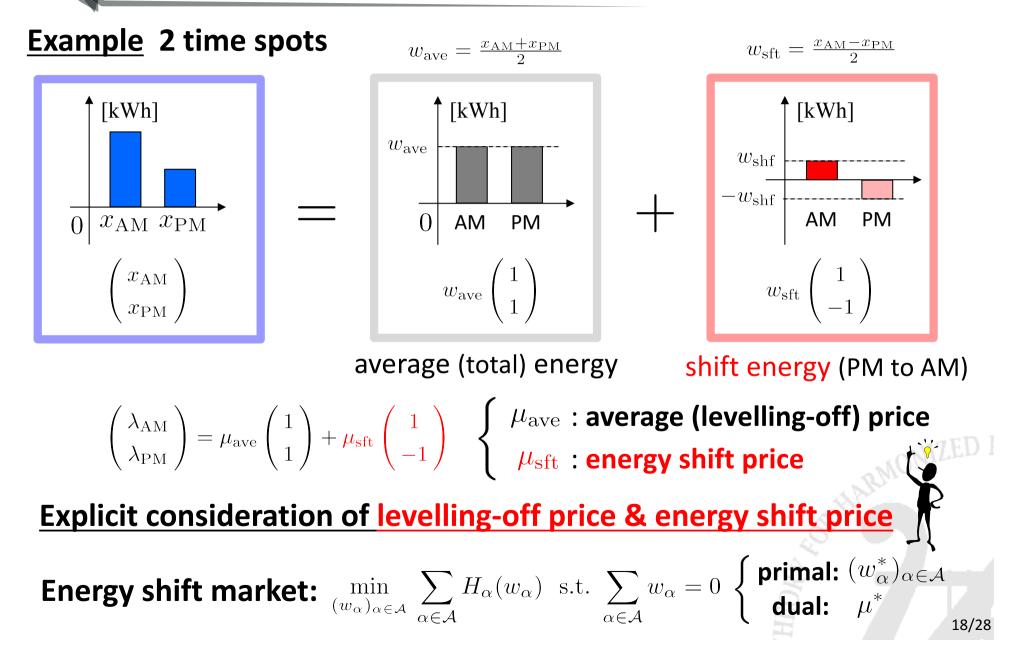


✓ From optimization view: (A) preconditioning (B)-(C) updates of primal/dual variables 16/28 **Energy Shift: A Key Property of Batteries**

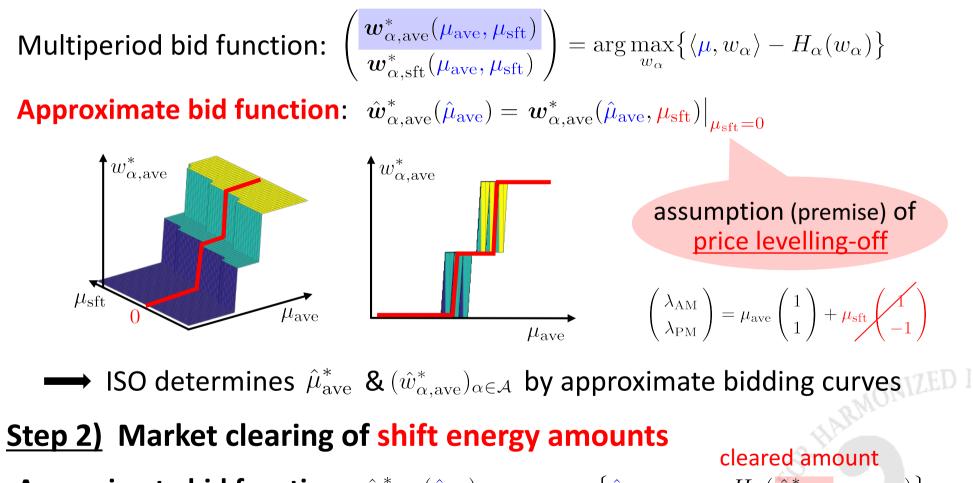
Agg 1 (generators):
$$\begin{pmatrix} x_{1,AM} \\ x_{1,PM} \end{pmatrix} = \begin{pmatrix} g_{AM} \\ g_{PM} \end{pmatrix}$$
100 $\begin{bmatrix} [kWh] \\ 60 \\ 20 \\ 20 \\ 0 \end{bmatrix} (B) 10 [yen/kWh]$ Spec of gens: $\begin{pmatrix} (A) & 0 \sim 50 [kWh] & 5 [yen/kWh] \\ (B) & 0 \sim 50 [kWh] & 10 [yen/kWh] \\ (B) & 0 \sim 50 [kWh] & 10 [yen/kWh] \end{pmatrix}$ $\begin{bmatrix} 20 \\ 20 \\ 0 \\ 0 \end{bmatrix} (A) 5 [yen/kWh]$ Agg 2 (loads): $\begin{pmatrix} x_{2,AM} \\ x_{2,PM} \end{pmatrix} = \begin{pmatrix} -l_{AM} \\ -l_{PM} \end{pmatrix} = \begin{pmatrix} -20 \\ -60 \end{pmatrix}$ Optimal price: $\begin{pmatrix} \lambda_{AM}^* \\ \lambda_{PM}^* \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$ Agg 3 (batteries): $\begin{pmatrix} x_{3,AM} \\ x_{3,PM} \end{pmatrix} = \begin{pmatrix} \delta_{AM}^{out} - \delta_{AM}^{in} \\ \delta_{PM}^{out} - \delta_{PM}^{in} \end{pmatrix}$ $\int b_{M}^{out} - \delta_{PM}^{in} \end{pmatrix}$ $\int b_{M}^{out} - \delta_{PM}^{in} \end{pmatrix}$ Agg 3 (batteries): $\begin{pmatrix} x_{3,AM} \\ x_{3,PM} \end{pmatrix} = \begin{pmatrix} \delta_{0}^{out} - \delta_{PM}^{in} \\ \delta_{PM}^{out} - \delta_{PM}^{in} \end{pmatrix}$ $\int b_{M}^{out} - \delta_{PM}^{in} \end{pmatrix}$ New optimal price: $\begin{pmatrix} \lambda_{AM}^* \\ \lambda_{PM}^* \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$ $\int b_{M}^{out} - \delta_{PM}^{in} \\ Battery leads to price levelling-off!$ Energy market with explicit consideration of energy shift??

17/28

Fourier-Like Basis Transformation



Step 1) Market clearing of average energy amounts

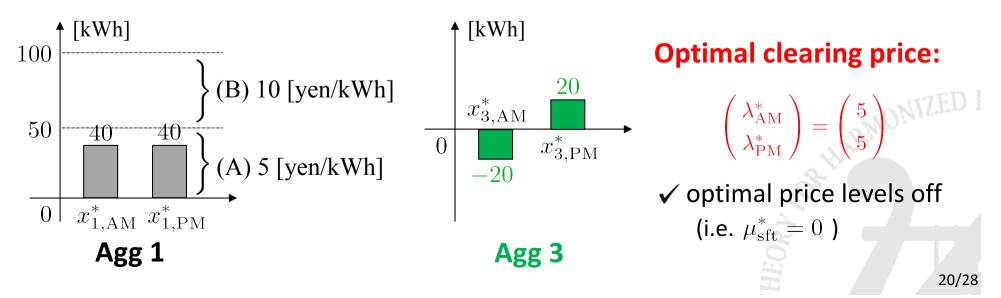


Approximate bid function: $\hat{w}_{\alpha,\text{sft}}^*(\hat{\mu}_{\text{sft}}) = \arg \max_{w_{\alpha,\text{sft}}} \{\hat{\mu}_{\text{sft}} w_{\alpha,\text{sft}} - H_{\alpha}(\hat{w}_{\alpha,\text{ave}}^*, w_{\alpha,\text{sft}})\}$ \longrightarrow ISO determines $\hat{\mu}_{\text{sft}}^* \& (\hat{w}_{\alpha,\text{sft}}^*)_{\alpha \in \mathcal{A}}$ by approximate bidding curves 19/28

Example: Sequential Market Clearing

Agg 1 (generators):
$$\begin{pmatrix} x_{1,AM} \\ x_{1,PM} \end{pmatrix} = \begin{pmatrix} g_{AM} \\ g_{PM} \end{pmatrix}$$
 $\begin{cases} (A) \ 0 \sim 50 \ [kWh] \ 5 \ [yen/kWh] \\ (B) \ 0 \sim 50 \ [kWh] \ 10 \ [yen/kWh] \end{cases}$ Agg 2 (loads): $\begin{pmatrix} x_{2,AM} \\ x_{2,PM} \end{pmatrix} = \begin{pmatrix} -l_{AM} \\ -l_{PM} \end{pmatrix} = \begin{pmatrix} -20 \\ -60 \end{pmatrix}$ $150 \quad 100 \quad 1$

Socially optimal market results (only god knows!!)

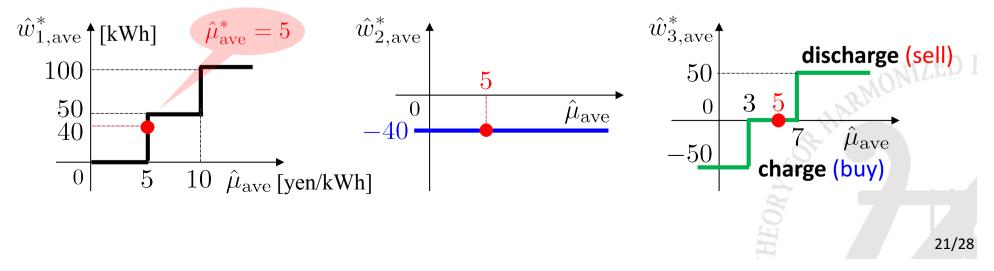


-350

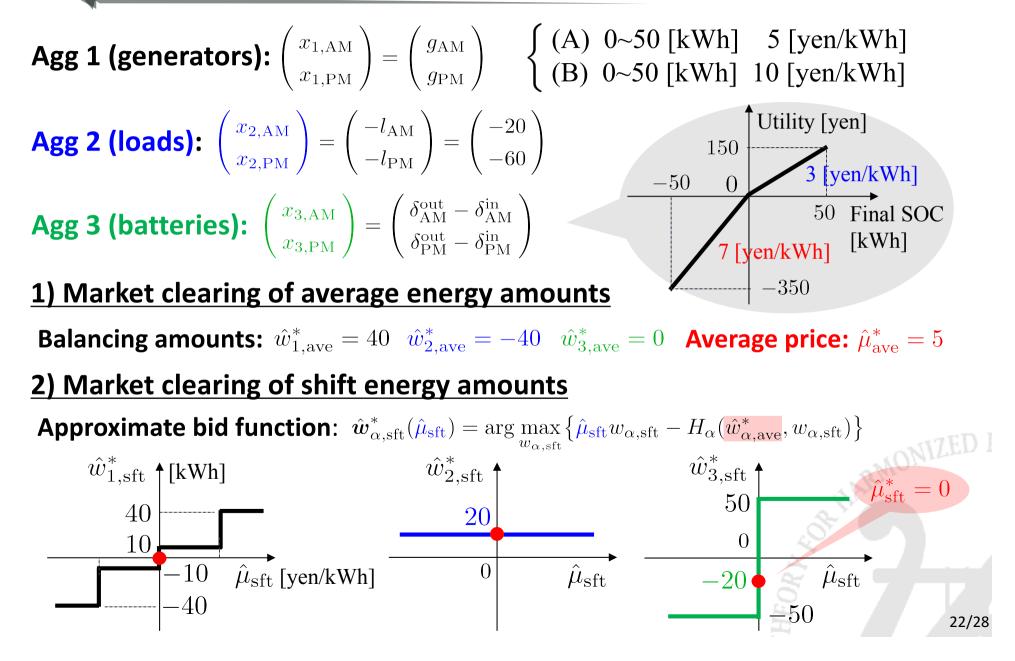
Example: Sequential Market Clearing

Agg 1 (generators):
$$\begin{pmatrix} x_{1,AM} \\ x_{1,PM} \end{pmatrix} = \begin{pmatrix} g_{AM} \\ g_{PM} \end{pmatrix}$$
 { (A) 0~50 [kWh] 5 [yen/kWh]
(B) 0~50 [kWh] 10 [yen/kWh]
(Agg 2 (loads): $\begin{pmatrix} x_{2,AM} \\ x_{2,PM} \end{pmatrix} = \begin{pmatrix} -l_{AM} \\ -l_{PM} \end{pmatrix} = \begin{pmatrix} -20 \\ -60 \end{pmatrix}$
(Utility [yen]
(150) $\frac{150}{3}$ [yen/kWh]
(1) Market clearing of average energy amounts

Approximate bid function: $\hat{w}^*_{\alpha,\mathrm{ave}}(\hat{\mu}_{\mathrm{ave}}) = w^*_{\alpha,\mathrm{ave}}(\hat{\mu}_{\mathrm{ave}},\mu_{\mathrm{sft}}) \big|_{\mu_{\mathrm{sft}}=0}$



- Example: Sequential Market Clearing



Example: Sequential Market Clearing

Agg 1 (generators):
$$\begin{pmatrix} x_{1,AM} \\ x_{1,PM} \end{pmatrix} = \begin{pmatrix} g_{AM} \\ g_{PM} \end{pmatrix}$$
 { (A) 0~50 [kWh] 5 [yen/kWh]
(B) 0~50 [kWh] 10 [yen/kWh]
Agg 2 (loads): $\begin{pmatrix} x_{2,AM} \\ x_{2,PM} \end{pmatrix} = \begin{pmatrix} -l_{AM} \\ -l_{PM} \end{pmatrix} = \begin{pmatrix} -20 \\ -60 \end{pmatrix}$
Agg 3 (batteries): $\begin{pmatrix} x_{3,AM} \\ x_{3,PM} \end{pmatrix} = \begin{pmatrix} \delta_{AM}^{out} - \delta_{AM}^{in} \\ \delta_{PM}^{out} - \delta_{PM}^{in} \end{pmatrix}$
1) Market clearing of average energy amounts
Balancing amounts: $\hat{w}_{1,ave}^* = 40$ $\hat{w}_{2,ave}^* = -40$ $\hat{w}_{3,ave}^* = 0$ Average price: $\hat{\mu}_{ave}^* = 5$
2) Market clearing of shift energy amounts
Balancing amounts: $\hat{w}_{1,sft}^* = 0$ $\hat{w}_{2,sft}^* = 20$ $\hat{w}_{3,sft}^* = -20$ Shift energy price: $\hat{\mu}_{sft}^* = 0$
[Theorem] Socially optimal market clearing iff optimal price levels off

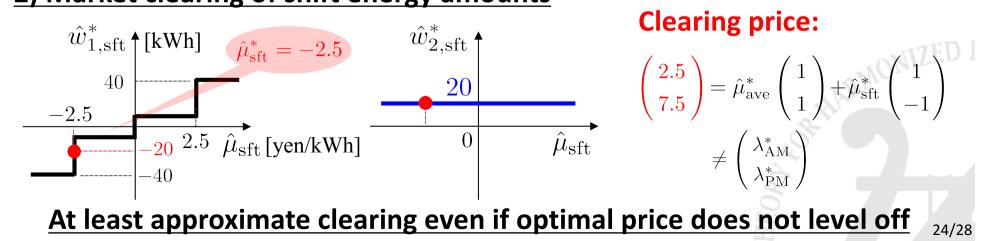
i.e.
$$(T^{-1}\hat{w}^*_{\alpha})_{\alpha\in\mathcal{A}} = (x^*_{\alpha})_{\alpha\in\mathcal{A}}, \ T^{-1}\hat{\mu}^* = \lambda^* \iff \lambda_1^* = \cdots = \lambda_n^*$$

Example: Sequential Market Clearing

Agg 1 (generators):
$$\begin{pmatrix} x_{1,AM} \\ x_{1,PM} \end{pmatrix} = \begin{pmatrix} g_{AM} \\ g_{PM} \end{pmatrix}$$
 $\begin{cases} (A) \ 0 \sim 50 \ [kWh] \ 5 \ [yen/kWh] \\ (B) \ 0 \sim 50 \ [kWh] \ 10 \ [yen/kWh] \end{cases}$ Agg 2 (loads): $\begin{pmatrix} x_{2,AM} \\ x_{2,PM} \end{pmatrix} = \begin{pmatrix} -l_{AM} \\ -l_{PM} \end{pmatrix} = \begin{pmatrix} -20 \\ -60 \end{pmatrix}$ Optimal clearing price:Agg 3 (l(without battery aggregator) $\begin{pmatrix} \zeta_{AM} \\ \chi_{3,PM} \end{pmatrix} = \begin{pmatrix} \delta_{AM} \\ \delta_{PM} \end{pmatrix} = \begin{pmatrix} \delta_{AM} \\ \delta_{PM} \end{pmatrix}$ $\begin{pmatrix} \lambda_{AM} \\ \lambda_{PM} \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$

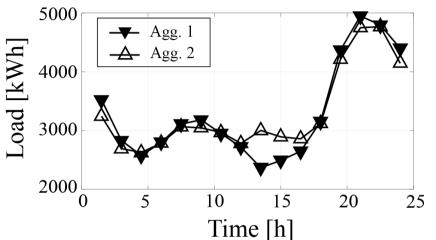
1) Market clearing of average energy amounts

Balancing amounts: $\hat{w}_{1,\text{ave}}^* = 40 \quad \hat{w}_{2,\text{ave}}^* = -40 \quad \hat{w}_{3}^*(w/o) \quad 0$ Average price: $\hat{\mu}_{\text{ave}}^* = 5$ 2) Market clearing of shift energy amounts



Agg 3 (9 types of generators)

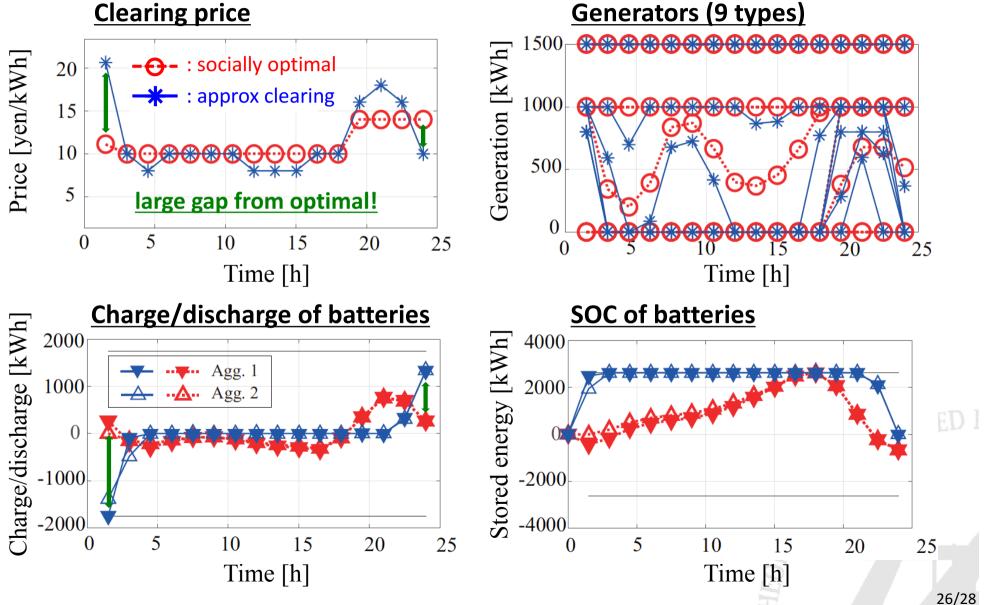
Generation costs: 3, 6,..., 27 [yen/kWh]



Resultant social costs when varying battery penetration levels (16 time spots)

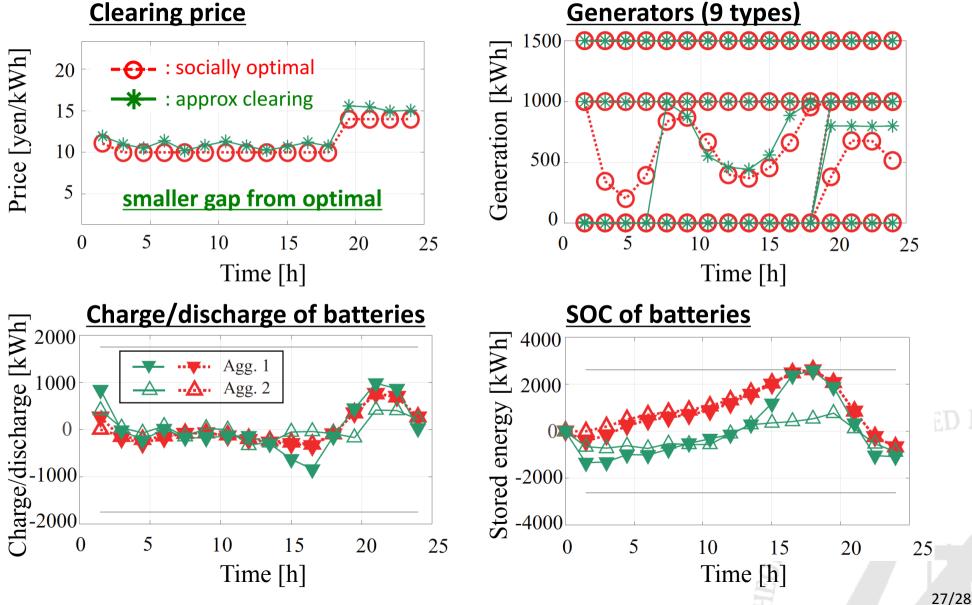
Sequential Clearing in Time Domain

Clearing price



Sequential Clearing in Fourier-Like Domain

Clearing price



- Bidding system design for multiperiod electricity markets
 - Distributed algorithm design for convex optimization
 - Each aggregator submits bidding curves to ISO
 - ISO finds clearing price and balancing amounts by bidding curves
- Proposed approach to bidding system design
 - Basis transformation compatible with energy shift markets
 - Sequential clearing scheme based on approximate bidding curves

A Distributed Scheme for Power Profile Market Clearing under High Battery Penetration, IFAC WC 2017

Bidding System Design for Multiperiod Electricity Markets: Pricing of Stored Energy Shiftability, CDC 2017 (to appear)

Thank you for your attention!