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Abstract— In this paper, we give an equivalence condition for
incremental passivity in terms of convex gradients and perform
output regulator design for incrementally passive systems. To
derive the equivalence condition, we focus on the class of
incremental passive systems with quadratic storage functions,
which can be transformed into a particular realization called a
self-dual realization. On the basis of the self-dual realization, in
which the input matrix necessarily coincides with the transpose
of the output matrix, we show that the convexity of potential
functions is necessary and sufficient for the incremental pas-
sivity of systems whose vector field is given as the gradient of
potential functions. Furthermore, we show that the equilibrium
of such convex gradient systems can be analyzed via the convex
conjugate defined by the Legendre-Fenchel transformation.
Combining these facts, we then develop a design method of
output regulators that have a potential to improve a degree of
stability while leaving the original equilibrium of integrator-
based control systems invariant. The stability improvement is
demonstrated though an example of power systems control, in
which the resultant output regulator is shown to have a low-pass
property with the nonlinearity of input saturation.

I. INTRODUCTION

In the real world, there can be found a number of systems
whose behavior is described as the gradient of physical (or
perhaps virtual) energy functions. Examples include reaction-
diffusion systems, Euler-Lagrange systems, port-Hamiltonian
systems, and so forth [1], [2]. As another example of such
gradient systems, dynamics stemming from the gradient
of objective functions can be found in the optimization
theory [3]. In particular, a relation between optimization-
based gradient systems and power system control has also
been investigated recently [4]. Generally speaking, analyses
on fundamental system properties, such as stability and
existence of equilibria, would be a necessary first step to
aim at systematically controlling them.

As for stability analyses, it is well known that passivity is
one of tractable properties of physical systems to discuss
the stability of interconnected systems. More specifically,
negative feedback interconnection of passive components
retains the passivity, thereby proving the stability of feedback
control systems. By making use of this fact, various types
of stability analyses based on passivity have been performed
in the literature [5], [6]. For example, analysis and synthesis
methods for network synchronization and coordination have
been developed in [7], [8] as an application of such passivity-
based stability analyses.
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For linear systems, the passivity can be characterized
by linear matrix inequalities, which are useful for both
theoretical and numerical analyses. On the other hand, for
general nonlinear systems, it is however difficult to find out
a simple characterization of passivity, except for the port-
Hamiltonian systems known as a useful class of passive
nonlinear systems. In view of this, it is valuable to explore
a simple characterization towards systematic control system
design.

Against this background, this paper aims at giving a
tractable characterization of passive systems. In particular,
focusing on the class of incrementally passive systems with
quadratic storage functions, which can be transformed into a
particular realization called a self-dual realization [9], we
show that the convexity of potential functions is neces-
sary and sufficient for the incremental passivity of systems
whose vector field is given as the gradient of potential
functions. This clarification is based on the fact that the
input matrix necessarily coincides with the transpose of the
output matrix in the self-dual realization. Furthermore, we
show that the equilibrium of such convex gradient systems
can be systematically analyzed via the conjugate of convex
functions, defined by the Legendre-Fenchel transformation
[10]. Note that the incremental passivity [11]–[13], which is
generally stronger than the standard notion of passivity, is a
useful property to guarantee the stability of an equilibrium
of interconnected nonlinear systems, especially in the case
where the equilibrium is not at the origin of the state-space.

On the basis of the investigations above, we then de-
velop a design method of output regulators that have a
potential to improve a stability degree while leaving the
original equilibrium of integrator-based control systems in-
variant. The efficiency of the proposed method is numerically
demonstrated through an example of decentralized output
regulation of swing equations appearing in power systems,
where the resultant output regulator is shown to have a low-
pass property with the nonlinearity of input saturation. It
should be noted that input saturation generally causes the
loss of passivity as shown in [14]. In contrast to this, we
show that, by giving an appropriate convex function, a low-
pass controller subject to input saturation can be expressed as
a convex gradient system possessing incremental passivity.
Furthermore, we demonstrate that a degree of system stability
can be improved as long as the time constant of controllers
is sufficiently small, i.e., as long as a singular perturbation
approximation of controllers is valid, even when the control
input is subject to saturation.

Finally, we give some references related to passivity-



based analyses of dynamical systems originating in convex
optimization. A passive controller design method for network
flow optimization is proposed in [15], where a dynamics
stemming from a source updating law is shown to have
a passive property. It should be noted that the paper only
deals with a specific problem where the objective func-
tion is given as the sum of functions of scalar variable,
which leads to a network of one-dimensional subsystems.
Therefore, the result cannot be applied straightforwardly
to general optimization problems that involve multivariate
objective functions, yielding a network of multi-dimensional
subsystems. In a similar way, [16], [17] propose a passive
controller design method for market mechanisms in smart
grids. Furthermore, [18] shows that a class of passivity-based
cooperative control problems has a relation with network
flow optimization problems. In that paper, the convergence of
output agreement is discussed on the premise that subsystems
forming a cooperative network are assumed to be passive.

The remainder of this paper is structured as follows. In
Section II, summarizing the preliminary facts for incremental
passivity and convex functions, we give an equivalence con-
dition of incrementally passive systems in terms of convex
gradients. Furthermore, we show that the equilibrium of
convex gradient systems can be analyzed by conjugating
convex functions. Next, in Section III, we apply the results
in Section II to output regulator design for incrementally
passive systems, where we show that a monotone property
of convex functions can be utilized to improve a stabilizing
performance of control systems. In Section IV, numerical
simulations are given to show the efficiency of the proposed
output regulator design method. Finally, concluding remarks
are provided in Section V.

II. ANALYSIS OF CONVEX GRADIENT SYSTEMS

A. Preliminaries

1) Incrementally Passive Systems: Let us consider the
class of dynamical systems given by

Σ :

{
ẋ = f(x) +Bu

y = Cx
(1)

where x ∈ Rn denotes the state, u ∈ Rp denotes the
input signal, and y ∈ Rp denotes the output signal. In the
following, we denote the domains of x, u, and y by X , U ,
and Y , respectively. Furthermore, let EΣ denote the set of
all triplets (x, u, y) ∈ X ×U ×Y that satisfy the dynamical
equation of Σ in (1). In this notation, we first introduce the
following notion of incremental passivity [11]–[13].

Definition 1: A dynamical system Σ in (1) is said to
be incrementally passive if there exist a positive definite
function S : Rn → R and a positive semidefinite function
δ : Rn × Rn → R such that

Ṡ(∆x) ≤ ∆uT∆y − δ(x1, x2), t ≥ 0 (2)

for any (x1, u1, y1) ∈ EΣ and (x2, u2, y2) ∈ EΣ, where

∆x := x1 − x2, ∆u := u1 − u2, ∆y := y1 − y2.

In particular, it is said to be strictly incrementally passive if
(2) is satisfied with δ being positive unless x1 = x2.

One major advantage of the incremental passivity is that a
network system composed of the negative feedback intercon-
nection of incrementally passive systems is shown to have a
stable nonzero equilibrium. This can be seen as follows. Let
Σ1 and Σ2 be incrementally passive systems with respect to
the storage functions S1 : Rn1 → R and S2 : Rn2 → R,
and suppose that at least one of them is strictly incre-
mentally passive. Furthermore, let (x1, u1, y1) ∈ EΣ1 and
(x2, u2, y2) ∈ EΣ2 be their feasible dynamical trajectories
whereas let (x∗

1, u
∗
1, y

∗
1) ∈ EΣ1 and (x∗

2, u
∗
2, y

∗
2) ∈ EΣ2 be

their stationary trajectories. In this notation, if Σ1 and Σ2

are interconnected with

u1 = y2, u2 = −y1,

then for S(x1, x2) := S1(x1) + S2(x2), which is positive
definite, we have

Ṡ(x1 − x∗
1, x2 − x∗

2) = Ṡ1(x1 − x∗
1) + Ṡ2(x2 − x∗

2)

≤ (u1 − u∗
1)

T(y1 − y∗1) + (u2 − u∗
2)

T(y2 − y∗2) = 0,

where the strict inequality holds unless x1 = x∗
1 and x2 =

x∗
2. This implies that S serves as a Lyapunov function to

prove the asymptotic stability of the equilibrium (x∗
1, x

∗
2).

2) Convex Functions: Next, we give some preliminary
facts for convex functions [3], [10]. A function F : Rn → R
is said to be convex if

F ((1− λ)x+ λx′) ≤ (1− λ)F (x) + λF (x′) (3)

for all 0 < λ < 1 and for all pairs of x and x′ in the domain
such that F is finite. Such a domain, denoted by XF , is called
the effective domain of F and it is known to be convex. In
particular, F is said to be strictly convex if (3) holds with
the strict inequality unless x = x′.

For F being continuously differentiable, the gradient of F
is denoted by ∇F , whose ith element is given by ∂F

∂xi
with

xi denoting the ith element of x. By the gradient of F , the
convexity can be characterized by

F (x)− F (x′) ≥ ∇FT(x′)(x− x′) (4)

for all x, x′ ∈ XF . Furthermore, for F being twice contin-
uously differentiable, the Hessian of F is denoted by HF ,
whose (i, j)-element is given by ∂2F

∂xi∂xj
. The convexity of

F can also be characterized by the positive semidefiniteness
of the Hessian as

HF (x) ⪰ 0 (5)

for all x ∈ XF . In a similar manner, the strict notion of
convexity can be characterized by the strict inequalities of
(4) and (5). In the rest of this paper, for simplicity, all
convex functions under consideration are assumed to be
twice continuously differentiable.

In many applications of convex analysis theory, such as
convex optimization, the following conjugate transformation



is often utilized for dual analyses. The conjugate of F is
defined by

F (z) := sup
x∈X

{
zTx− F (x)

}
, (6)

where X is a convex domain. It is known that, as long as F
is convex, F is also convex and the conjugate of F coincides
with F , namely

F (x) = sup
z∈Z

{
xTz − F (z)

}
, (7)

where Z is the set of all z such that the supremum of (7) is
finite. Furthermore, the strict convexity of F is equivalent
to the smoothness of F . In convex analysis theory, the
transformation between (6) and (7) is called the Legendre-
Fenchel transformation, and some of conjugate pairs can be
found in closed forms.

B. An Equivalence Condition for Incremental Passivity

In this subsection, we derive an equivalence condition for
incremental passivity. This derivation is based on a specific
realization having a symmetric nature, called a self-dual
realization [9] for the case of linear systems, as shown in
the following lemma.

Lemma 1: Let Σ in (1) be given and assume that it
is incrementally passive (strictly incremental passive) with
respect to S(x) = 1

2x
TV x, where V is positive definite.

Furthermore, let Vc be a Cholesky factor of V such that
V = V T

c Vc. Then, the realization of

Σ̃ :

{
˙̃x = Vcf(V

−1
c x̃) + VcBu

y = CV −1
c x̃

(8)

is incrementally passive (strictly incremental passive) with
respect to S̃(x̃) = 1

2∥x̃∥
2. In addition, VcB = (CV −1

c )T.
Proof: To prove the claim for incremental passivity,

we can assume that δ = 0 without loss of generality. Then,
for (x1, u1, y1) ∈ EΣ and (x2, u2, y2) ∈ EΣ, the incremental
inequality in (2) is represented by

{f(x1)− f(x2)}T V∆x+ (B∆u)TV∆x ≤ ∆uT∆y.

By the coordinate transformation of x̃ = Vcx, we have{
f̃(x̃1)− f̃(x̃2)

}T

∆x̃+ (B̃∆u)T∆x̃ ≤ ∆uT∆y (9)

where ∆x̃ := Vc∆x, f̃(x̃) := Vcf(V
−1
c x̃), and B̃ := VcB.

This implies that Σ̃ in (8) is incrementally passive with
respect to S̃(x̃) = 1

2∥x̃∥
2. Note that (9) is satisfied for all

feasible trajectories of x1, x2 ∈ X and u1, u2 ∈ U . Thus, it
follows for C̃ := CV −1

c that{
f̃(x̃1)− f̃(x̃2)

}T

∆x̃ ≤ 0, ∆uT(B̃T − C̃)∆x̃ ≤ 0.

This leads to B̃ = C̃T, because ∆x̃ and ∆u are arbitrary.
The same argument with the change of variables of δ proves
the claim for the strict notion of incremental passivity.

Lemma 1 shows that any incrementally passive systems
with a quadratic storage function can be transformed into

the specific realization given as in (8). For linear systems,
i.e., f(x) = Ax, the specific realization satisfies that

A+AT ⪯ 0, B = CT.

In the literature, this particular realization of passive systems
is known to have good compatibility with a passive controller
synthesis, model reduction, and so forth [9], [19]. The facts
of B = CT and the storage function of S(x) = 1

2∥x∥
2 in the

self-dual realization are essential in the following arguments.
Next, on the basis of the self-dual realization, we derive an

equivalence condition for incremental passivity in the context
of convex gradient. To this end, the following fact for convex
functions is useful [3].

Lemma 2: Let F : Rn → R and define

δF (x1, x2) := {∇F (x1)−∇F (x2)}T (x1 − x2). (10)

Then, δF is nonnegative for all x1, x2 ∈ XF if and only if
F is convex. In particular, δF is positive unless x1 = x2 if
F is strictly convex.

Lemma 2 shows that the positive semidefiniteness of δF
in (10), appearing in the incremental passivity analysis, is
equivalent to the convexity of F . This equivalence leads to
the following result.

Theorem 1: Let Σ in (1) be given and assume that there
exist a function F : Rn → R and a skew symmetric matrix
J ∈ Rn×n such that

f(x) = −∇F (x) + Jx. (11)

Then, Σ is incrementally passive with respect to S(x) =
1
2∥x∥

2 if and only if F is convex. In particular, Σ is strictly
incrementally passive if F is strictly convex.

Proof: From Lemma 1, we see that B = CT holds if
Σ is incrementally passive with respect to S(x) = 1

2∥x∥
2.

In the notation of (2), we have

Ṡ(∆x)−∆uT∆y = −δF (x1, x2),

where δF is defined as in (10). Thus, by Lemma 2, it
is nonpositive for all x1, x2 ∈ XF if and only if F is
convex. Similarly, the claim for strictly incremental passivity
is proven by the strict convexity of F , which implies that δF
is positive unless x1 = x2.

Theorem 1 shows that, as long as the vector field is repre-
sented by the gradient of potential functions, the convexity of
potential functions is necessary and sufficient for incremental
passivity with respect to quadratic storage functions. On the
basis of this investigation, let us introduce the following
terminology.

Definition 2: A dynamical system Σ in (1) is said to be
a convex gradient system if there exist a convex function
F : Rn → R and a skew symmetric matrix J ∈ Rn×n such
that (11) holds. In particular, a convex gradient system Σ is
said to be self-dual if B = CT.

From the discussion above, it can be seen that a self-
dual convex gradient system is incrementally passive with
respect to the unitary quadratic storage function. It should



be noted that any linear passive system is equivalent to a
convex gradient system, because its self-dual realization is
given by letting

F (x) = −1

2
xT(A+AT)x, J = A−AT,

which yields f(x) = Ax. From this viewpoint, we see that
the class of convex gradient systems in Definition 2 involves
that of linear passive systems associated with quadratic
storage functions.

An interconnected system given by the negative feedback
of self-dual convex gradient systems again belongs to the
class of convex gradient systems. This can be seen as[

ẋ

ξ̇

]
=

[
−∇F (x)

−∇G(ξ)

]
+

[
J CTH

−HTC J ′

] [
x
ξ

]
, (12)

where F and G are convex, J and J ′ are skew symmetric,
and C and H are matrices having compatible dimensions.
This type of negative feedback systems can appear in solving
convex optimization by gradient methods. To see this more
clearly, let us consider the convex-concave optimization

sup
ξ∈XG

inf
x∈XF

{
F (x)− (Hξ)TCx−G(ξ)

}
, (13)

which can be viewed as a general form of saddle-point
problems arising in the Lagrange dual decomposition for
convex optimization [3], [10]. Denoting the objective func-
tion by L(x, ξ), we consider the dynamics stemming from
the gradient descent and gradient ascent of (13) given as

ẋ = −∂L

∂x
(x, ξ), ξ̇ =

∂L

∂ξ
(x, ξ), (14)

which corresponds to the Uzawa algorithm to solve convex
optimizations. It can be readily verified that (14) is identical
to (12) with J = 0 and J ′ = 0. Furthermore, the solutions x∗

and ξ∗ of the convex-concave optimization in (13) coincide
with the stable equilibria of (12).

C. Equilibrium Analysis of Convex Gradient Systems

In this subsection, we give a method to analyze the
equilibrium of convex gradient systems using the conjugate
of convex functions. To this end, we show the following
simple but useful fact; see, e.g., [10] for a proof.

Lemma 3: Let a convex gradient system Σ be given as in
Definition 2, and assume that F is strictly convex and J = 0.
Let (x∗, u∗) be a feasible pair such that

∇F (x∗) = Bu∗. (15)

Then, it follows that

x∗ = ∇F (Bu∗) (16)

where F is the convex conjugate of F defined as in (6).
Lemma 3 shows that the conjugacy of convex functions

has a relation to the equilibrium analysis of convex gradient
systems. This is based on the fact that ∇F is the inverse
function of ∇F , and vice versa. For linear systems, it can
be verified that (16) is reduced to x∗ = −A−1Bu∗.

One application of this fact can be found in analyzing
a singular perturbation approximation of convex gradient
systems. To see this, let us consider applying the singular
perturbation approximation to the dynamics of ξ in (12) with
J ′ = 0. More specifically, replacing ξ̇ with 0, we have the
trajectory of ξ along x as

ξ = ∇G(−HTCx).

Substituting this into the dynamical equation of x in (12), we
obtain the singular perturbation model as a convex gradient
system

Σ̂ : ẋ = −∇F̂ (x) + Jx (17)

where
F̂ (x) := F (x) +G(−HTCx). (18)

Note that the stable equilibrium of Σ̂ is identical to that of
x in (12). In addition, one can say that a convergence rate to
the equilibrium is improved in view of the following stability
index.

Definition 3: Let a convex gradient system Σ be given as
in Definition 2, and assume that F is strictly convex. Let
x∗ be a feasible equilibrium such that there exists some u∗

satisfying (16). Then, an incremental stability degree of Σ
with respect to x∗ is defined by

θΣ(x) := δF (x, x
∗), (19)

where δF is defined as in (10).
The incremental stability degree θΣ corresponds to the

decreasing rate, i.e., time derivative, of the Lyapunov func-
tion S(x) = 1

2∥x − x∗∥2, proving the stability of an
equilibrium x∗, when injecting the corresponding constant
input u = u∗ such that (16). For linear systems with A
being negative definite, this function measures the degree of
negative definiteness because

θΣ(x) = −(x− x∗)TA(x− x∗).

On the basis of this definition, we can see for Σ̂ in (17)
that the incremental stability degree with respect to the
equilibrium x∗ of Σ̂ becomes larger as

θΣ(x) ≤ θΣ̂(x) (20)

for all x ∈ XF ∩XF̂ . The inequality in (20) is proven by the
monotone property of convex functions such that any pair of
convex functions F1 and F2 satisfies

δF1(x1, x2) ≤ δF1+F2(x1, x2) (21)

for all x1, x2 ∈ XF2 ∩ XF2 . This result will be applied to
convex gradient regulator design in Section III.

III. SYNTHESIS OF CONVEX GRADIENT SYSTEMS

In this section, we consider designing an output regula-
tor for incrementally passive systems, on the basis of the
analyses in Section II. In this output regulator design, we
explicitly use the equilibrium analysis based on Lemma 3 to
leave the original equilibrium invariant, while guaranteeing
the closed-loop stability in a way similar to [13].



Let a convex gradient system be given as in Definition 2
and assume that it is self-dual. Our objective here is to steer
the output y towards a constant reference signal y∗. One
simple approach to do this is implementing the conventional
integrator as[

ẋ

λ̇

]
=

[
−∇F (x)

y∗

]
+

[
J CT

−C 0

] [
x
λ

]
. (22)

In fact, owing to the incremental passivity of the integrator,
the equilibrium (x∗, λ∗) of (22) is proven to be asymptoti-
cally stable and y∗ = Cx∗ is to be guaranteed, as long as F
is strictly convex.

However, the convergence rate of (22) may not be desir-
able because it relies only on the inherent system stability.
Towards improving it, one can consider implementing an
additional controller to the feedback system. As taking
advantage of incremental passivity, it would be reasonable
to suppose that the additional input signal u is injected as

Σ :


[
ẋ

λ̇

]
=

[
−∇F (x)

y∗

]
+

[
J CT

−C 0

][
x
λ

]
+

[
CT

0

]
u

y =
[
C 0

] [ x
λ

]
.

(23)
To this system, we implement a convex gradient controller
with a time constant τ > 0 given as

κ :

{
τ ξ̇ = −∇G(ξ) +HTv

w = Hξ,
(24)

which is interconnected with Σ in (23) by

v = −y, u = w.

Note that it can be transformed to a self-dual realization by
scaling the state variable as ξ̃ =

√
τξ.

In this formulation, as the integration of analyses in
Section II, we show the following result for designing output
regulating systems.

Theorem 2: Consider the feedback system composed of
a convex gradient system Σ in (23) and a convex gradient
controller κ in (24), and let (x∗, λ∗) denote the equilibrium
of (22). If G : Rν → R is given as

G(ξ) = Γ (ξ)− (HTy∗)Tξ (25)

where Γ : Rν → R is a strictly convex function such that
∇Γ (0) = 0, then

lim
t→∞

(x, λ, ξ) = (x∗, λ∗, 0) (26)

for any initial values of (x, λ, ξ) and any time constant τ > 0.
In particular, in the limit of τ → 0, the resultant feedback
system approaches to a convex gradient system Σ̂ that is
given as replacing F in (22) with F̂ in (18). Furthermore,
for the incremental stability degree with respect to (x∗, λ∗),
it follows that

θΣ(x, λ) ≤ θΣ̂(x, λ) (27)

for all x ∈ XF ∩ XF̂ and λ ∈ R.

Proof: First, as shown in Lemma 3, we see that ∇Γ is
the inverse function of ∇Γ and vice versa. Thus, ∇Γ (0) = 0
is equivalent to ∇Γ (0) = 0. Furthermore, from the relation
among the affine transformation of conjugates [10], we see
that

G(µ) = Γ (µ+HTy∗)

where G and Γ are the convex conjugates of G and Γ ,
respectively. Then, using Theorem 3, we obtain

ξ∗ = ∇G(−HTy∗) = ∇Γ (0) = 0,

which implies u∗ = 0 at the equilibrium of the feedback
system. Hence, (26) is proven by the fact that the equilibrium
is asymptotically stable owing to the incremental passivity.

Next, we show (27). In the limit of τ → 0, coinciding with
the singular perturbation approximation of κ, it approaches
to the static controller given as

w = H∇G(HTv).

This implies that the resultant feedback system is identical
to Σ̂, given as replacing F in (22) with F̂ in (18). Note
that G(−HTCx) is convex. Thus, (27) follows from the
monotonicity as shown in (20).

Theorem 2 shows that the additional implementation of
the convex gradient controller G in (25) does not change
the equilibrium (x∗, λ∗) of Σ from (22). Furthermore, the
stability degree of the equilibrium can be improved in view
of the stability index in Definition 3, as long as the time
constant τ is sufficiently small. As for a suitable choice of
τ , there can be a trade-off relation between the convergence
rate to equilibria and the sensitivity to measurement noise.
More specifically, a smaller value of τ would be desirable
to improve the convergence rate whereas a larger value of
τ would be desirable to suppress measurement noise in a
larger frequency range.

IV. NUMERICAL EXAMPLES

A. System Description

Let us consider giving the system dynamics as{
Mζ̈ +Dζ̇ +Kζ = Eu

y = ETζ̇

where M ≻ 0 and D ≻ 0 denote mass and damper diagonal
matrices, K ≻ 0 denotes a spring stiffness matrix, and E is
a matrix having a compatible dimension. This second-order
system is often used as a primary model of rotor dynamics
for power system stabilization [20], [21], called a swing
equation, and it is incrementally passive since the input and
output are collocated [9].

With the state of x := [ζT, ζ̇T]T, the system dynamics can
be represented as Σ in (1) with

A =

[
0 I

−M−1K −M−1D

]
, B =

[
0

M−1E

]
,

C =
[
0 ET

]
,

(28)

where f(x) = Ax. For this system, we consider the situ-
ation where output regulation by the integrators in (22) is



performed in a decentralized fashion. To represent this, we
give E in (28) as

E = diag(1ni)i∈N, N := {1, . . . , N} (29)

where 1n ∈ Rn denotes the all-ones vector, N denotes the
number of subsystems, and ni denotes the dimension of the
ith subsystem, satisfying n = n1 + · · ·+ nN .

B. Convex Gradient Controller with Input Saturation

Next, we consider implementing a set of decentralized
controllers that individually supervise clusters of several
subsystems, i.e., a disjoint set of subsystems. To represent
this, we define an aggregated output signal by

ŷl :=
∑

i∈Cl
yi (30)

where yi denotes the ith element of y, and Cl ⊂ N denotes
a cluster defined as a consecutive index set such that∪

l∈LCl = N, max Cl < min Cl+1, L := {1, . . . , L}

for L denoting the number of clusters.
To demonstrate the output regulator design based on

Theorem 2, we consider implementing a set of decentralized
controllers subject to input saturation. To this end, we give
the dynamics of a controller for the lth cluster as

κl :

{
τ ξ̇l = −∇Γl(ξl) + kl(ŷ

∗
l + vl)

wl = klξl,
(31)

where kl > 0 denotes a controller gain, ŷ∗l denotes the
aggregated reference signal defined similarly to (30), and

∇Γl(ξl) =
αl

2
ln

ξ+l
ξ−l

, Γl(ξl) :=
αl

2
(ξ+l ln ξ+l + ξ−l ln ξ−l )

for ξ+l := αl + ξl and ξ−l := αl − ξl. The set of controllers
is connected with Σ by

vl = −ŷl, ui = wl, i ∈ Cl, l ∈ L,

where ŷl is defined as in (30) and ui denotes the ith element
of u.

As shown in Theorem 2, the asymptotic stability of (26) is
guaranteed because Γl is a strictly convex function satisfying
∇Γl(0) = 0. Note that the controller state ξl is confined to
the effective domain XGl

= (−αl, αl). This implies that the
control input is subject to the saturation of

|ui| ≤ klαl, ∀i ∈ Cl. (32)

In addition, we see that the linear approximation of κl in
(31) becomes

τẇl = −wl + k2l (ŷ
∗
l + vl),

whose transfer function from ŷ∗l + vl to wl is k2l /(1 + τs).
Thus, κl can be considered as a one-dimensional low-pass
filter subject to input saturation. Furthermore, in the limit of
τ → 0, κl approaches to the static controller

wl = kl∇Γ l

(
kl(ŷ

∗
l + vl)

)
(33)

where the conjugate function is given by

∇Γ l(µl) = αl tanh
µl

αl
, Γ l(µl) := α2

l ln cosh
µl

αl
.

From this expression, we see that the input saturation is
represented as the hyperbolic tangent (sigmoid) function. As
shown in Theorem 2, the static controller in (33) has the
ability to improve the degree of stability in the sense of (27).

C. Simulation Results

We consider the network of 16 mass components, which
yields a 32-dimensional system Σ in (1) with (28). The
system network structure is depicted in Fig. 1, where the
nodes represent the mass components and the edges represent
the interconnection among them. The parameter matrices are
given as M = 1.25× I , D = 0.02× I , and

Ki,j =

{
−0.3, if nodes i and j are connected,
0, otherwise,

Ki,i =

{
0.3−

∑16
j=1,j ̸=i Ki,j , i = 1,

−
∑16

j=1,j ̸=i Ki,j , otherwise,

where Ki,j denotes the (i, j)-element of K.
Let us regard the 32-dimensional system as the network

of four subsystems, each of which is composed of four mass
components, as shown in the dotted circles in Fig. 1. This
corresponds to N = 4 and ni = 8 in (29). In this setting,
implementing the integrators as in (22), we plot the output
signals y by the dashed-dotted lines in the upper subfigure
of Fig. 2, where the reference signal is set to y∗ = 14. From
this figure, we see that the amplitude of oscillations is not
made small in the time interval. This is due to the fact that
the degree of inherent system stability is not very large.

To improve the convergence rate in the output regula-
tion, we implement a set of dynamical controllers with the
nonlinearity of input saturation, explained in Section IV-B.
For the controllers κl in (31), we construct the clusters as
C1 = {1, 2} and C2 = {3, 4}, which lead to the aggregated
output ŷl as in (30). The controller parameters are given
as kl = 0.8 and αl = 0.0625 for l = 1, 2, which result
in the input saturation of |ui| ≤ 0.05 as in (32). In this
setting, the resultant outputs y and inputs u are plotted in the
upper and lower subfigures of Fig. 2, respectively, where the
thin solid lines correspond to the case of the static controller
in (33) and the dashed lines correspond to the case of the
dynamical one with the time constant of τ = 0.16. From
these figures, we see that the static and dynamical controllers
result in the almost same output and input signals and both
controllers make the convergence rate higher, in spite of the
input saturation.

In addition, we show the results when giving the controller
time constants as τ = 1 and τ = 9. The resultant outputs and
inputs are plotted in Fig. 3 where the solid and dashed lines
correspond to the cases of τ = 1 and τ = 9, respectively.
From this figure, we see that the convergence rates become
lower as increasing the value of time constants. As long as
the measurement output is not contaminated with noise, we
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Fig. 1. System network structure and decentralized output regulators.
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Fig. 2. Output and input signals in the cases of simple integration, static
controller and dynamical controller with τ = 0.16.

can improve the convergence rate, i.e., the degree of closed-
loop stability, as giving a smaller time constant of controllers.
Explicit consideration of measurement noise, which can be
suppressed by the dynamical action (low-pass property) of
controllers, is one of future works to pursue.

V. CONCLUDING REMARKS

In this paper, we have derived an equivalence condition
for incremental passivity in terms of convex gradients. In
particular, focusing on the class of incremental passive
systems with a quadratic storage function, which can be
transformed into a self-dual realization, we show that the
convexity of potential functions is necessary and sufficient
for the incremental passivity of systems whose vector field is
given as the gradient of potential functions. Furthermore, we
have analyzed the equilibrium of convex gradient systems
via the convex conjugate defined by the Legendre-Fenchel
transformation.

On the basis of these theoretical investigations, we have
developed a design method of output regulators for incre-
mentally passive systems. The effectiveness of the proposed
method has been shown though a numerical example of
decentralized output regulation in the frequency control of
power systems. In this numerical example, we have demon-
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Fig. 3. Output and input signals in the cases of dynamical controllers with
τ = 1 and τ = 9.

strated the improvement of convergence rates, while showing
that a nonlinear low-pass filter subject to input saturation can
be regarded as a convex gradient system.
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