2nd ESIC-HARPS Workshop on Smart Grid and Renewable Energy

Power Profile Markets: Power Profile Balancing under Large-Scale Penetration of Battery Storage

Takayuki Ishizaki (Tokyo Institute of Technology)

BOWER

Masakazu Koike, Asami Ueda, Tu Bo, Jun-ichi Imura

Large-scale penetration of battery storage

- improve dispatchability of renewables
- power profile control is necessary to regulate unpredicted battery use

Power profile market for competitive aggregators

Goal: Clearing scheme for non-strictly convex power profile markets

- Introduction of Market Mechanisms
- Difficulty of Power Profile Market Clearing
- Clearing Scheme Based on Particular Property of Electricity Markets
- Numerical Verification
- Concluding Remarks

- Math Tools from Convex Analysis

Subdifferential: $\partial F(x)$

map to set-values if F is not smooth monotone increasing

Conjugate transformation:

$$\overline{F}(\lambda) = \sup_{x} \{\lambda x - F(x)\}$$

$$\begin{array}{c} F(x) \\ \updownarrow \\ conjugate \end{array} & \overline{F}(\lambda) \\ \uparrow \\ \partial F(x) \end{array} & \stackrel{\text{inverse}}{\longleftarrow} \overline{\partial F}(\lambda) \end{array} \qquad \lambda \in \partial F(x) \\ x \in \partial \overline{F}(\lambda) \\ \hline \end{array}$$

Example 7 Links to Market Mechanisms Profit function: $J_{\alpha}(x_{\alpha}; \lambda) = \lambda x_{\alpha} - F_{\alpha}(x_{\alpha})$ focus on a time point

$$\begin{array}{ll} \text{Maximum profit:} \ \ \overline{F}_{\alpha}(\lambda) = \max_{x_{\alpha}} J_{\alpha}(x_{\alpha};\lambda) & \text{Maximizer:} \ \ x_{\alpha}^{\star} \in \overline{\partial F}_{\alpha}(\lambda) \\ & \text{bid function} \end{array}$$

$$x_{\alpha}^{*} \in \partial \overline{F}_{\alpha}(\lambda^{*}) \text{ s.t. } \sum_{\alpha \in \mathcal{A}} x_{\alpha}^{*} = 0$$

$$x_{\alpha}^{*} = 0$$

Market clearing with bid functions: $x_{\alpha}^* \in \partial \overline{F}_{\alpha}(\lambda^*)$ s.t. $\sum_{\alpha \in \mathcal{A}} x_{\alpha}^* = 0$

Bidding strategy is practical only for scalar-valued products

- Introduction of Market Mechanisms
- Difficulty of Power Profile Market Clearing
- **Clearing Scheme Based on Particular Property of Electricity Markets**
- Numerical Verification
- Concluding Remarks

Cost Function of Power Profiles

Power profile of Aggregator α : $x_{\alpha} = -l_{\alpha} + g_{\alpha} + \eta_{\alpha}^{\text{out}} \delta_{\alpha}^{\text{out}} - \frac{1}{\eta_{\alpha}^{\text{in}}} \delta_{\alpha}^{\text{in}}$

Generation cost (convex): $G_{\alpha}(g_{\alpha})$ Battery usage cost (convex): $D_{\alpha}(\delta_{\alpha})$

✓ including evaluation of final SOC: $s_{\alpha}^{\text{fin}}(\delta_{\alpha}) = s_{\alpha}^{\text{ini}} + \mathbf{1}_{n}^{\mathsf{T}}(\delta_{\alpha}^{\text{in}} - \delta_{\alpha}^{\text{out}})$

Lemma
$$F_{\alpha}(x_{\alpha}) = \min_{(g_{\alpha},\delta_{\alpha})\in \mathcal{F}_{\alpha}(x_{\alpha})} \left\{ G_{\alpha}(g_{\alpha}) + D_{\alpha}(\delta_{\alpha}) \right\}$$
 is convex.

uncertain renewables can be involved as robust/stochastic optimization

Conjecture from Numerical Simulations

Producer: $x_1 = g_1$ $F_1(x_1) = G_1(x_1)$

Consumer: $x_2 = -l_2 + \eta^{\text{out}} \delta_2^{\text{out}} - \frac{1}{\eta^{\text{in}}} \delta_2^{\text{in}}$ $F_2(x_2) = \min_{\delta_2 \in \mathcal{F}_2(x_2)} D_2(\delta_2)$

Market clearing: $\max_{\lambda} \min_{x} \left\{ \sum_{\alpha \in \mathcal{A}} F_{\alpha}(x_{\alpha}) - \lambda^{\mathsf{T}} \sum_{\alpha \in \mathcal{A}} x_{\alpha} \right\} \text{ Lagrangian}$

Clearing price $\lambda^* \in \mathbb{R}^n$ when varying the degree of battery penetration:

Mathematical Deduction

(Definition) A power profile x_{α} is said to be <u>shiftable</u> between

time points *i* and *j* if $\nabla F_{\alpha}^{\mathsf{T}}(x_{\alpha})(e_i - e_j) = 0$.

(Theorem) There exists some aggregator $\alpha \in \mathcal{A}$ such that

 $x_{\alpha}^* \in \partial \overline{F}_{\alpha}(\lambda^*)$ is shiftable between time points *i* and *j* iff $\lambda_i^* = \lambda_j^*$.

Price levelling-off deduced from battery capacity margin

- Pricing via Energy Bid Functions

Power profile profit function: $J_{\alpha}(x_{\alpha};\lambda) = \lambda^{\mathsf{T}}x_{\alpha} - F_{\alpha}(x_{\alpha})$ price levelling-off Energy profit function: $J_{\alpha}(x_{\alpha};\mathbf{1}_{n}\lambda_{\mathbf{e}}) = \lambda_{\mathbf{e}} \mathbf{1}_{n}^{\mathsf{T}}x_{\alpha} - F_{\alpha}(x_{\alpha})$ \checkmark $\lambda = \mathbf{1}_{n}\lambda_{\mathbf{e}}$

Levelling-off price can be found via offline programs

From Energy Balance to Profile Balance

Profile imbalance minimization: $\min_{x} \left\| \sum_{\alpha \in \mathcal{A}} x_{\alpha} \right\|^{2}$ s.t. $x_{\alpha} \in \mathcal{X}_{\alpha}$ where $\mathcal{X}_{\alpha} = \left\{ x_{\alpha} : \text{Energy profit function } J_{\alpha}(x_{\alpha}; \mathbf{1}_{n} \lambda_{e}^{*}) \text{ is maximized } \right\}$

[Theorem] $x_{\alpha}^{k} \to x_{\alpha}^{*}, \ \forall \alpha \in \mathcal{A}.$ In particular $\sum_{\alpha \in \mathcal{A}} x_{\alpha}^{*} = 0$ if $\lambda^{*} = \mathbf{1}_{n} \lambda_{e}^{*}.$

- Introduction of Market Mechanisms
- Difficulty of Power Profile Market Clearing
- Clearing Scheme Based on Particular Property of Electricity Markets
- Numerical Verification
- Concluding Remarks

✓ scale is **not yet adjusted** to real situation

Numerical Verification

Clearing price $\lambda^* \in \mathbb{R}^n$ when varying the degree of battery penetration:

Total bid functions:

Bid functions in the large battery case:

Profile Imbalance Minimization

Profile imbalance minimization by ADMM:

Power profile markets for competitive aggregators

- large-scale battery penetration leads to price levelling-off
 - profile shiftability owing to battery capacity margin
 - non-strictly convex programs
- levelling-off price is found by energy bid functions (offline programs)
- decentralized profile imbalance minimization by ADMM
- **Future works**
 - analysis on the best length of time periods

Thank you for your attention!

BOWER