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Abstract

In this paper, we propose an interval quadratic programming method for the day-ahead scheduling of power generation and
battery charge cycles, where the prediction uncertainty of power consumption and photovoltaic power generation is described
as a parameter vector lying in an interval box. The interval quadratic programming is formulated as the problem of finding the
tightest box, i.e., interval hull, that encloses the image of a function of the minimizer in parametric quadratic programming.
To solve this problem in a computationally efficient manner, we take a novel approach based on a monotonicity analysis of
the minimizer in the parametric quadratic programming. In particular, giving a tractable parameterization of the minimizer
on the basis of the Karush-Kuhn-Tucker condition, we show that the monotonicity analysis with respect to the parameter
vector can be relaxed to the sign pattern analysis of an oblique projection matrix. The monotonicity of the minimizer is found
to be essential in the day-ahead dispatch problem, where uncertain predicted demand, described by a parameter vector, is
dispatched to power generation and battery charge cycles while the economic cost is minimized. Finally, we verify the efficiency
of the proposed method numerically, using experimental and predicted data for power consumption and photovoltaic power
generation.

Key words: Interval Quadratic Programming, Monotonicity Analysis, Prediction Uncertainty, Demand Dispatch.

1 Introduction

Reductions in greenhouse gas emissions are recognized as
a global goal, with renewable energy sources such as pho-
tovoltaic (PV) and wind power expected to contribute
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to an efficient solution. For example, large-scale pene-
tration of PV power generators into Japanese houses is
expected by 2030. In this situation, the total amount of
PV power generation can cover approximately 50% of
the peak power consumption, as well as 10% of the en-
tire energy consumption [1].

With this background, we need to manage a power sys-
tem that involves the traditional power generators as
well as PV power generators and storage batteries while
maintaining the balance among the amounts of power
generation, demand, and battery charging power. To im-
prove the economic efficiency of power system manage-
ment, the day-ahead schedules of power generation and
battery charge cycles can be based on day-ahead pre-
dictions of power consumption and PV power genera-
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Fig. 1. Dispatch problems arising in scheduling of power generation and battery charge cycles.

tion [2–4]. In the following, we use the term “demand”
to represent the defference between the total consumer
demand and the amount of PV power generation. As
shown in Figs. 1 (a) and (b), the minimization of eco-
nomic cost, such as the fuel cost of generators and the
deterioration of storage batteries, can be regarded as a
dispatch problem in which the predicted demand profile
is divided into that for power generation and for battery
charge power.

However, sharp fluctuations in PV power generation and
idiosyncratic power consumption make the exact predic-
tion of demand profiles difficult. In view of this, a num-
ber of prediction methods for renewable energy genera-
tion have been developed in the literature. For example,
[5] and [6] utilize weather forecasts and numerical simu-
lations of meteorological phenomena to produce predic-
tion profiles of renewable energy. On the other hand, as
a relatively new approach, there are several methods for
determining confidence intervals for renewable energy
prediction [7,8], representing an interval in which pre-
diction profiles are contained with a certain probability
(e.g., 95%). To comply with such an interval-valued pre-
diction method, we model the uncertain demand predic-
tion as a set of all demand profiles that lie in an interval
box. In particular, we use a confidence interval for PV
power generation prediction produced by the method
proposed in [9]. In this method, a prediction model based
on support vector regression produces an interval with
a predetermined confidence level from meteorological
data [10], involving ambient temperature, humidity, and
cloudiness. Its performance analysis is performed in [11]
showing that the Laplacian distribution is better than
the Gaussian distribution to approximate the expected
variation of the prediction error coverage with relatively
high confidence levels.

The day-ahead scheduling based on this type of pre-
diction leads to an interval-valued dispatch problem, as
shown in Figs. 1 (c) and (d). Note that our demand dis-
patch is clearly different from the standard one [3,12,13]
in the sense that we deal with the prediction uncertainty
as an interval-valued parameter. The resultant interval
of power generation profiles corresponds to the regulat-
ing capacity of power generators that is sufficient to tol-
erate a given amount of prediction uncertainty.

In this paper, we perform the interval-valued dis-
patch via interval quadratic programming. The interval
quadratic programming is formulated as the problem of
finding the tightest box, i.e., interval hull, that encloses
the image of an output function consisting of the min-
imizer of a parametric quadratic program, where the
parameter vector lies in an interval box. The problem
can also be regarded as a type of reachability analysis
problems [14–16] in the context of parametric quadratic
programming. This is because we aim at capturing the
image of a mapping function defined over an interval
box. It should be emphasized that such a problem is not
necessarily easy to solve, because the exact interval hull
is not obtained by calculating minimizers for a finite
number of grid points in the parameter space.

To overcome this difficulty, we take a novel approach
based on a monotonicity analysis to calculate the inter-
val hull of interest. This novel approach has the advan-
tage that we can calculate the exact interval hull in a
finite number of operations. More specifically, it is theo-
retically guaranteed that the minimizer with respect to
some extreme points of the interval box gives the exact
interval hull. This approach has the potential to han-
dle large-scale problems with high-dimensional decision
variables and parameter space.

To clarify our theoretical contribution for interval-
valued optimization, some references on interval analy-
sis theory are in order. In fact, most studies on interval
analysis focus on global optimization, i.e., finding the
global extremum of a multi-modal multi-variable func-
tion [17,18], or on constraint satisfaction problems,
i.e., covering a set of feasible solutions complying with
equality and inequality constraints [19]. Towards these
objectives, a constraint propagation technique is com-
monly used in conjunction with branch-and-bound al-
gorithms [19,20]. Even though the application of these
methods can address interval quadratic programming,
this requires the direct computation and partition of the
interval of real numbers, thereby incurring large com-
putation loads. Moreover, overestimation often causes
the resultant solution to be conservative.

Algorithms for parametric quadratic programming have
been developed for model predictive control [21,22].
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Even though these deal with a similar type of parametric
quadratic programming, their focus is mainly on parti-
tioning the parameter space with respect to the index
sets of active inequality constraints. In this sense, their
objective is clearly different from ours because we aim
to capture the image of minimizers over the parameter
space. Furthermore, the application of the algorithms in
[21,22] to large-scale problems is not realistic, because
their reliance on the iterative enhancement of the search
space often entails a considerable computation load. To
the best of our knowledge, there is no computationally
efficient method to handle general interval-valued op-
timization. It should be noted that, even though the
papers [23,24] handle nonlinear programming problems
with interval-valued data, the problem formulation is
totally different from that in this paper because they
focus on calculating the optimal value bounds of an
objective function.

In addition, we reference some related studies to clarify
our contribution from the viewpoint of its application.
Several studies on the scheduling of power generation
and battery charge cycles have considered the predic-
tion uncertainty using stochastic optimization [25–30]
and fuzzy theory [31,32]. In these papers, power gen-
eration scheduling is performed to minimize the oper-
ational cost of generators from the viewpoint of worst-
value and expected-value analyses. Note that their prob-
lem formulation is clearly different from ours, as we deal
with the interval-valued dispatch problem on the basis
of the interval prediction of renewable energy. In addi-
tion, even though interval optimization has been applied
to environmental energy problems [33–35], the solution
method involves the direct application of interval arith-
metic, i.e., the extension of real algebraic operations to
intervals, which can lead to conservative results due to
overestimation.

Finally, we compare this paper with its preliminary ver-
sions [36,37], in which the scheduling of power generation
and battery charge cycles is discussed on the premise
of a single type of power generators. In this paper, we
generalize the preliminary results to the case of multi-
ple generator types, and explicitly consider the charge
and discharge efficiency and the deterioration cost of
storage batteries. This generalization makes our method
more realistic in the sense that we can systematically
deal with generators that have different specifications,
such as time constants and fuel costs, while taking into
account the energy loss due to the battery charge and
discharge cycle. Note that, in this paper, we consider de-
mand dispatch to multiple types of generators whereas
we do not distinguish the same type of multiple gener-
ators as lumping them together. An allocation problem
among an identical type of generators, corresponding to
the current unit commitment [26,38], can be discussed
after performing the uncertain demand dispatch here;
see [39] for the day-ahead demand dispatch in the same
perspective.

The remainder of this paper is structured as follows: In
Section 2, we formulate the interval quadratic program-
ming problem of finding the interval hull that encloses
the image of a function of the minimizer in a parametric
quadratic program. Then, in Section 3, we describe the
day-ahead dispatch of uncertain demand to power gener-
ation and battery charge cycles using interval quadratic
programming. Section 4 presents a solution to this prob-
lem on the basis of the notion of monotonicity. Then, in
Section 5, we report the results of numerical experiments
to verify the efficiency of our solution method. Finally,
concluding remarks are provided in Section 6.

Notation. We denote the set of real numbers by R,
the set of nonnegative real numbers by R≥0, the n-
dimensional unit matrix by In, the n-dimensional all-
ones vector by 1n, the all-ones matrix in Rn×m by 1n×m,
the ith column of In by eni , the power set of a set M by
P(M), the cardinality of a set M by |M |, and the Kro-
necker product of matricesM1 andM2 byM1⊗M2. For
a natural number n, let

N[n] := {1, . . . , n}.

We denote a matrix composed of columns of In corre-
sponding to the indices I ⊆ N[n] by eI ∈ Rn×|I|. Fur-
thermore

EI := eIe
T
I ∈ Rn×n.

The block-diagonal matrix whose diagonal blocks are
M1, . . . ,Mn is denoted by dg(M1, . . . ,Mn), or simply
dg(Mi) if there is no chance of confusion. For a function
f : Rn → Rm and a closed domain D ⊂ Rn, the image
of f(·) over D is denoted by

imf(D) := {y ∈ Rm : ∃d ∈ D s.t. y = f(d)} .

Finally, a vector whose ith subvector is xi is denoted by

[xi]i∈N[n] :=
[
xT
1 · · · xT

n

]T
.

2 Problem Formulation

We consider the following class of quadratic program-
ming with a parameter vector d ∈ Rn:

QP(d) : min
x∈Rν

1

2
xTQx−pTx s.t.

{
Ainx ≤ bin(d)

Aeqx = beq(d)
(1)

whereQ = QT ∈ Rν×ν is assumed to be positive definite,
p ∈ Rν , Ain ∈ Rkin×ν , Aeq ∈ Rkeq×N , bin : Rn → Rkin ,
and beq : Rn → Rkeq . For a given d, let

x∗(d), x∗ : Rn → Rν (2)
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denote the minimizer of QP(d) in (1). This minimizer can
be found by an arbitrary algorithm for solving QP(d) with
a fixed d. Furthermore, with regard to the minimizer, we
define an output function z∗ : Rn → Rm as

z∗(d) := Fx∗(d) + g(d) (3)

where F ∈ Rm×ν and g : Rn → Rm.

In the following, let us consider the parameter vector d
to be uncertain and included in an interval box

[d] := [d, d] ⊂ Rn (4)

where d, d ∈ Rn correspond to the element-wise lower
and upper limits of d. Taking a set-membership ap-
proach, we are interested in finding the element-wise
lower and upper limits, i.e., interval hull, of the image
Z∗ := im z∗([d]) given by

[z∗] := [z∗, z∗] ⊂ Rm,

{
z∗ := inf Z∗

z∗ := supZ∗
(5)

where the infimum and supremum are defined in the
element-wise sense. Note that [z∗] is the tightest box that
encloses Z∗. In this paper, we refer to the problem of
finding this interval hull as interval quadratic program-
ming.

Note that this problem is not necessarily easy to solve,
because computing the values of z∗(d) for a finite num-
ber of d ∈ [d] does not generally give the interval hull
[z∗]. One possible approach to compute the interval hull
is the direct application of interval arithmetic, i.e., the
extension of real algebraic operations to intervals. In
practice, however, this approach leads to a conservative
result, because the interval arithmetic encourages over-
estimation, and often suffers from a high computational
load.

We overcome this difficulty by confining our attention to
a specific class of problems. We devise an efficient inter-
val quadratic programming solution via a monotonicity
analysis, rather than using the interval arithmetic. Our
approach is based on the fact that the lower and upper
limits of the image of a monotonic function can be com-
puted directly from the mapping of some extreme points
of its argument, which is confined to an interval set.

3 Dispatch Problem of Uncertain Demand Via
Interval Quadratic Programming

First, we introduce a mathematical model of the power
system. Let N[n] be the time horizon of interest, and
denote the power consumption and PV power generation

at time t by pt and p′t, respectively. We denote the net
demand at time t by

dt := pt − p′t, t ∈ N[n]. (6)

Furthermore, supposing that L generators are in oper-
ation, we denote the power generated by the lth gener-

ator at time t as v
(l)
t . With this notation, we model the

temporal variation in the energy stored in the battery by
yt+1 = yt + ηin∆yint − 1

ηout
∆youtt

dt =
L∑

l=1

v
(l)
t − (∆yint −∆youtt ),

t ∈ N[n] (7)

where yt ∈ R denotes the battery stored energy,
∆yint ,∆youtt ∈ R denote the battery charging and dis-
charging power, and ηin, ηout ∈ (0, 1] denote the con-
stants representing the charge and discharge efficiency
of the storage battery, respectively. Note that the initial
battery energy y1 is assumed to be a fixed constant. The
second equality in (7) represents the balance among
power generation, demand, and battery charge and
discharge power.

Considering the physical limitation of the storage bat-
tery, we impose a set of inequality constraints on (7) as

y ≤ yt ≤ y,

{
0 ≤ ∆yint ≤ ∆y

in

0 ≤ ∆youtt ≤ ∆y
out

,
t ∈ N[n] (8)

where the underlined/overlined constants denote the
lower/upper limits of the corresponding variables, rep-
resenting the battery and inverter capacities. Further-
more, we impose an equality constraint on the battery
stored energy as

yn+1 = y1 (9)

for the sustainable use of the storage battery. In the rest
of this paper, we denote the variables to be determined
as

v := [v(l)]l∈N[L] ∈ RLn,

y := [yt]t∈N[n] ∈ Rn, ∆y := ∆yin −∆yout ∈ Rn

(10)

where v(l) := [v
(l)
t ]t∈N[n], and the charge and discharge

power profiles

∆yin := [∆yint ]t∈N[n], ∆yout := [∆youtt ]t∈N[n] (11)

can be regarded as auxiliary variables. Note that ∆y in
(10) corresponds to the net battery charge and discharge
power to be determined by optimization. In this nota-
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tion, we define an objective function by

J(v,∆yout) :=
n∑

t=1

{
L∑

l=1

f (l)(v
(l)
t ) + g(∆youtt )

}
, (12)

where

f (l)(x) := a
(l)
2 x2 + a

(l)
1 x, a

(l)
1 , a

(l)
2 ∈ R≥0 (13)

evaluates the fuel cost of the lth generator and

g(x) := b2x
2 + b1x, b1, b2 ∈ R≥0 (14)

evaluates the battery deterioration cost caused by dis-
charging. Their specifications will be given in Section 5.

In the following, let us regard dt in (6) as a parameter
vector that can vary within an interval. More specifically,
given an interval box [d] in (4), we consider the demand
to be an uncertain predicted value lying in the interval
box, namely

d := [dt]t∈N[n] ∈ [d]. (15)

Note that the interval box [d] can be regarded as a con-
fidence interval [7,8] of demand prediction. Let

v∗(d), v∗ : Rn → RLn,

y∗(d), y∗ : Rn → Rn, ∆y∗(d), ∆y∗ : Rn → Rn

(16)
denote the minimizers of J(v,∆yout) in (12) subject to
the inequality and equality constraints in (7), (8), and
(9), which involve the interval parameter d ∈ [d]. In this
notation, our objective is to find the interval hulls of im
v∗([d]), imy∗([d]), and im∆y∗([d]), denoted by

[v∗] := [v∗, v∗], [y∗] := [y∗, y∗], [∆y∗] := [∆y∗,∆y
∗
]

(17)
respectively, where the lower and upper limits are de-
fined in the same manner as in (5).

Finally, let us rewrite the problem of finding the interval
hulls in (17) using the interval quadratic programming
in Section 2. Note that

∆yin = ∆yout +

L∑
l=1

v(l) − d (18)

from the second equality in (7). Thus, we can eliminate
the redundant variable as

x =

[
x1

x2

]
∈ R(L+1)n,

{
x1 := v ∈ RLn

x2 := ∆yout ∈ Rn.
(19)

Using this elimination with the lower triangular matrix
M ∈ Rn×n whose (i, j)-element is given by

Mi,j =

{
1, i ≥ j

0, i < j,
(20)

we obtain the parametric quadratic programming QP(d)
in (1) where the coefficient matrices are given in (21).
Furthermore, the output function

z∗(d) :=


v∗(d)

y∗(d)

∆y∗(d)


can be rewritten in the form of (3) with

F :=


ILn 0

1T
L ⊗M 0

1T
L ⊗ In 0

 , g(d) := −


0

Md

d

 . (22)

Note that the size of the interval hull [v∗] can be regarded
as the minimal regulating capacity of power generators
required to cover any demand prediction profile d lying
in the confidence interval [d]. To reduce the redundant
fuel cost of generators while maintaining a stable power
supply, it is crucial to find the minimum regulating ca-
pacity sufficient to tolerate any possible demand predic-
tion profile. Similarly, the sizes of [y∗] and [∆y∗] can be
regarded as the required battery and inverter capacities
with regard to the confidence interval of demand predic-
tion.

4 Solution Method

4.1 Monotonicity-Based Approach

In this section, we analyse the parametric quadratic pro-
gramming QP(d) in (1) from the viewpoint of monotonic-
ity. To do this, we introduce the following definition:

Definition 1 Let an interval box [d] in (4) be given. A
function f : Rn → Rm is said to be σ-monotone if, for
any d ∈ [d], there exists σ ∈ {−1, 1}m×n such that

σi,j
∂fi(d)

∂dj
≥ 0, ∀i ∈ N[m], j ∈ N[n] (23)

where σi,j denotes the (i, j)-element of σ, and fi(·) and
di denote the ith elements of f(·) and d, respectively.

The σ-monotonicity of f(d) is defined as the existence of
a sign matrix σ such that (23) holds, which means that
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Ain :=



1T
L ⊗ In In

−1T
L ⊗ In −In

0 In

0 −In

δ11
T
L ⊗M δ2M

−δ11
T
L ⊗M −δ2M


, bin(d) :=



∆y
in
1n + d

−(∆yin1n + d)

∆y
out

1n

−∆yout1n

y + δ1Md

−(y + δ1Md)


, Aeq :=

[
δ11

T
L ⊗ 1T

n δ21
T
n

]
, beq(d) := δ11

T
nd

Q :=

[
dg(α−1

l )⊗ In 0

0 In

]
, p := −1

2

[
dg

(
a
(l)
1

b2

)
1L ⊗ 1n

b1
b2
1n

]
, αl :=

b2

a
(l)
2

, δ1 := ηin, δ2 := ηin − 1

ηout

(21)

the signs of ∂fi/∂dj are invariant with respect to d ∈ [d].
Note that, if f(d) is σ-monotone, then we can obtain the
lower and upper limits of the interval hull of imf([d]) as

f = [fi(d
(i))]i∈N[m], f = [fi(d

(i)
)]i∈N[m] (24)

where

d(i) :=
[
σi,j min

{
σi,jdj , σi,jdj

}]
j∈N[n]

d
(i)

:=
[
σi,j max

{
σi,jdj , σi,jdj

}]
j∈N[n]

with dj and dj denoting the jth elements of d and d. This
implies that the element-wise infimum and supremum
of the image are given by the mapping of some extreme
points.

Next, we give a parameterization of x∗(d) in (2) in terms
of a family of index sets corresponding to active inequal-
ity constraints. From the Karush-Kuhn-Tucker (KKT)
condition [40], we can state that, for theminimizer x∗(d),
there exist a nonnegative function λ : Rn → R6n

≥0 and a

nonzero function µ : Rn → R\{0}, called KKT multipli-
ers, such that

Qx∗(d)− p+AT
inλ(d) +AT

eqµ(d) = 0

λT(d) [Ainx
∗(d)− bin(d)] = 0

Ainx
∗(d)− bin(d) ≤ 0

Aeqx
∗(d)− beq(d) = 0.

(25)

TheKKT condition is generally a necessary condition for
a local minimum, but it is sufficient for a global minimum
ifQ is positive definite. It is known that, for a fixed d, the
set of indices corresponding to the positive elements of
λ(d) is compatible with the active inequality constraints
against which the minimizer x∗(d) collides. We refer to
such an index set as the active index set. On the basis
of this fact, we parameterize the minimizer as in the
following lemma:

Lemma 1 Consider QP(d) in (1) with (21). Let I ∈
P(N[6n]) be such that

AI :=

[
eTIAin

Aeq

]
∈ R(|I|+1)×(L+1)n (26)

is of full-row rank, and define

xc(I; d) = PIbI(d) +GIp (27)

where

PI := Q−1AT
I(AIQ

−1AT
I)

−1 ∈ R(L+1)n×|I|

GI := Q−1 − PIAIQ
−1 ∈ R(L+1)n×(L+1)n

and

bI(d) :=

[
eTIbin(d)

beq(d)

]
, bI : Rn → R|I|+1.

Then, for x∗(d) in (2), it follows that

x∗(d) = xc(I∗(d); d) (28)

where
I∗(d) := {i ∈ N[6n] : λi(d) > 0} (29)

and λi(d) denotes the ith element of λ(d) in (25).

PROOF. If I = I∗(d), it follows that

EIλ(d) = λ(d), AIx
∗(d) = bI(d).

Then, we have

x∗(d) = Q−1p−Q−1AT
Iξ(d), ξ(d) :=

[
eTIλ(d)

µ(d)

]
.

(30)
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Multiplying this by AI from the left side, we have

bI(d) = AIQ
−1p−AIQ

−1AT
Iξ(d),

where AIQ
−1AT

I is nonsingular owing to the full-row
rankness of AI . Solving this equation with respect to
ξ(d) and substituting into (30), we obtain

x∗(d) = PIbI(d) +GIp. (31)

This equation implies that (28) holds for (27) if I =
I∗(d). Hence, the claim follows. □

Lemma 1 parameterizes the minimizer x∗(d) in (2) by
I ∈ P(N[6n]), corresponding to the possible variation
of active index sets. Note that, for a fixed d ∈ [d], there
exists a certain I∗(d) in (29) that represents the actual
active index set. Using xc(I; d) in (27), it can readily be
verified that z∗(d) in (3) is σ-monotone if

zc(I; d) := Fxc(I; d) + g(d)

is σ-monotone for all I ∈ P(N[6n]) such that AI in (26)
is of full-row rank.

4.2 Monotonicity Analysis

In this subsection, we show that σ-monotonicity is sat-
isfied for z∗(d) in (3) with (22). To this end, we first
calculate the derivative of xc(I; d) in (27) as follows:

Lemma 2 Consider QP(d) in (1) with (21). For I ∈
P(N[6n]) such that AI in (26) is of full-row rank, define

Ki := K+
i ∪ K−

i ∈ P(N[n]), i ∈ {1, 2, 3} (32)

where{
K+

i := {j ∈ N[n] : j + 2(i− 1)n ∈ I}
K−

i := {j ∈ N[n] : j + {2(i− 1) + 1}n ∈ I}.

Let ki be the ith smallest element of K̃3 := K3 ∪ {n},
and define

L(i) := N[ki]\L(i−1), i ∈ N[|K̃3|] (33)

where L(0) is regarded as the empty set. Then, it follows
that

∂xc(I; d)
∂d

= Q−1ΦT
I(ΦIQ

−1ΦT
I)

−1ΦI

[
In

0

]
(34)

where xc(I; d) is defined as in (27) and

ΦI :=


1T
L ⊗ eTK1

eTK1

0 eTK2

δ11
T
L ⊗ hTEK1

δ2h
TEK1


h := dg(1|L(i)|) ∈ Rn×|K̃3|, K1 := N[n]\K1.

(35)

PROOF. By the fact that the first n columns of AI
coincide with ∂bI/∂d, we notice that

∂xc(I; d)
∂d

= Q−1AT
I(AIQ

−1AT
I)

−1AI

[
In

0

]
.

In the following, let us prove

Q−1AT
I(AIQ

−1AT
I)

−1AI = Q−1ΦT
I(ΦIQ

−1ΦT
I)

−1ΦI .

To this end, it suffices to show that

im Q−1AT
I = im Q−1ΦT

I , ker AI = ker ΦI . (36)

This is because (36) is equivalent to the existence of
nonsingular matrices V and W such that

Q−1AT
IV = Q−1ΦT

I , WAI = ΦI .

Note that K+
i ∩ K−

i = ∅ for all i ∈ {1, 2, 3}, because AI
in (26) is of full-row rank. This implies that eI is given
by

eTI =

 eTK+
1

0 eTK+
2

0 eTK+
3

0

0 eTK−
1

0 eTK−
2

0 eTK−
3

 ,

which yields

AI = dg(J1, J2, J3, 1)


1T
L ⊗ eTK1

eTK1

0 eTK2

δ11
T
L ⊗ eTK3

M δ2e
T
K3

M

δ11
T
L ⊗ 1T

n δ21
T
n


where Ji = dg(I|K+

i
|,−I|K−

i
|). Furthermore, because

im h = im MTeK̃3
= im

[
MTeK3 1n

]
by the definition of h and K̃3, and

im
[
eK1 h

]
= im

[
eK1 EK1

h
]
,

we verify the equality for the image in (36). The equality
for the kernel is proven in the same manner. □
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(ΦIQ
−1ΦT

I)
−1 =

[
(X − yz−1yT)−1 −(X − yz−1yT)−1yz−1

{−(X − yz−1yT)−1yz−1}T z−1 + z−1yT(X − yz−1yT)−1yz−1

]
(38)

Lemma 2 relaxes the monotonicity analysis of xc(I; d)
to the sign analysis of the matrix in (34), which is com-
posed of an oblique projection matrix. This representa-
tion makes the sign pattern analysis systematic as fol-
lows:

Lemma 3 In the same notation as that of Lemma 2,
define

ΨI := α
[
eK1 0 δ1EK1

h
]
(ΦIQ

−1ΦT
I)

−1ΦI

[
In

0

]
(37)

where α := α1 + · · · + αL. Then, for all I ∈ P(N[6n])
such that AI in (26) is of full-row rank, all elements of
ΨI are nonnegative and its diagonal elements are less
than or equal to 1. In addition, for M defined as in (20),
all elements of MΨI are nonnegative and less than or
equal to 1.

PROOF. From a direct calculation, we verify that

ΦIQ
−1ΦT

I =

[
X y

yT z

]

where

X :=

[
(α+ 1)I|K1| e

T
K1

eK2

eTK2
eK1 I|K2|

]

y :=

[
0

δ2e
T
K2

EK1
h

]
, z := (αδ21 + δ22)dg(|K

(i)

1 |)

with K(i)

1 := K1 ∩ L(i). Note that K(i)

1 ̸= ∅ is guaran-
teed by the full-row rankness of AI . Thus, its blockwise
inversion yields (38). Let S(X − yz−1yT) denote the
Schur complement [41] of X − yz−1y with respect to
(α+ 1)I|K1|. Furthermore, let S−1(X − yz−1yT) denote
its inverse. In the following, we evaluate the elements of
ΨI by partitioning it as

Θ11 := eTK1
ΨIeK1 , Θ12 := eTK1

ΨIeK1

Θ21 := eTK1
ΨIeK1 , Θ22 := eTK1

ΨIeK1
.

(39)

Note that Θ11 and Θ22 correspond to the principal sub-
matrices of ΨI , and Θ12 and Θ21 correspond to its off-

diagonal blocks. First, we notice that

Θ11 = α
[
I|K1| 0

]
(ΦIQ

−1ΦT
I)

−1

[
I|K1|

0

]

= α
[
I|K1| 0

]
(X − yz−1yT)−1

[
I|K1|

0

]
= αS−1(X − yz−1yT).

To evaluate this, let us denote the (2, 2)-block of the
Schur complement S(X − yz−1yT) by

S22 := I|K2| − δ′eTK2
EK1

dg

(
1

|K(i)

1 |
1|L(i)|×|L(i)|

)
EK1

eK2

where δ′ := δ22/(αδ
2
1+δ22). From S22e

T
K2

eK1 = eTK2
eK1 , it

follows that S−1
22 eTK2

eK1 = eTK2
eK1 . Thus, by the block-

wise inversion of the Schur complement, we obtain

Θ11 = α
{
(α+ 1)I|K1| − eTK1

eK2S−1
22 eTK2

eK1

}−1

= α
{
αI|K1| − eTK1

eK2
eTK2

eK1

}−1

= I|K1| −
1

α+ 1
eTK1

eK2
eTK2

eK1

(40)

where K2 := N[n]\K2. Hence, Θ11 is a diagonal matrix
whose elements are all nonnegative and less than or equal
to 1.

Next, we evaluate Θ22. Let K(i)
2 := K2∩L(i). Because of

(X − yz−1yT)y = ydg(λi)

where

λi :=
αδ21 |K

(i)

1 |+
(
|K(i)

1 | − |K(i)

1 ∩ K(i)
2 |
)
δ22

(αδ21 + δ22)|K
(i)

1 |
,

it follows that

Z := (X − yz−1yT)−1y = ydg(λ−1
i ). (41)

Thus

Θ22 = α
[
0 δ1e

T
K1

h
]
(ΦIQ

−1ΦT
I)

−1

[
0

δ1h
TeK1

]
= αδ21e

T
K1

h(z−1 + z−1yTZz−1)hTeK1

= eTK1
dg
(
µi1|L(i)|×|L(i)|

)
eK1

= dg
(
µi1|K(i)

1 |×|K(i)

1 |

)
(42)
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where

µi :=
αδ21

αδ21 |K
(i)

1 |+
(
|K(i)

1 | − |K(i)

1 ∩ K(i)
2 |
)
δ22

(43)

are less than or equal to 1. Hence, all elements of Θ22 are
nonnegative and less than or equal to 1. Furthermore, it
follows from (41) that

Θ12 = −α
[
I|K1| 0

]
Zz−1hTeK1

= 0.

In the same manner, we can prove that Θ21 = 0. Hence,
it follows that all elements of ΨI are nonnegative and
its diagonal elements are less than or equal to 1.

Finally, we prove that all elements of MΨI are less than
or equal to 1. LetMi denote the ith row ofM . Note that
the element-wise inequality

0 ≤ Mi ≤ Mi+1

holds. The nonnegativity of the elements of ΨI implies
MiΨI ≤ Mi+1ΨI . Thus, it suffices to show that all ele-
ments of

MnΨI = 1T
nΨI ,

or equivalently 1T
|K1|Θ11 and 1T

|K1|
Θ22, are less than or

equal to 1. From the diagonal structure of Θ11 in (40), we
verify the claim for 1T

|K1|Θ11. On the other hand, from

the block-diagonal structure of Θ22 in (42), we have

1T
|K1|

Θ22 = 1T
|K1|

dg
(
µi|K

(i)

1 |I|K(i)

1 |

)
.

Note that µi|K
(i)

1 | ≤ 1 follows from the definition of µi

in (43). Hence, the claim follows. □

We are now ready to state the main result of this pa-
per. Lemma 3 leads to the following result on the σ-
monotonicity of z∗(d) in (3):

Theorem 4 Consider QP(d) in (1) with (21). Let

σ :=


σ(1)

σ(2)

σ(3)

 ∈ {−1, 1}(L+2)n×n (44)

where the (i, j)-element of σ(1) ∈ {−1, 1}Ln×n is given

as σ
(1)
i,j = 1, and those of σ(2), σ(3) ∈ {−1, 1}n×n are

given as

σ
(2)
i,j =

{
−1, i ≥ j

1, i < j,
σ
(3)
i,j =

{
−1, i = j

1, i ̸= j,
(45)

respectively. Then, z∗(d) in (3) with (22) is σ-monotone.

PROOF. Define x∗
1(d) as the first subvector of x∗(d)

in (1) that is compatible with the partition in (19). To
prove the claim, it suffices to show that x∗

1(d) is σ(1)-
monotone and

(1T
L ⊗M)x∗

1(d)−Md, (1T
L ⊗ In)x

∗
1(d)− d

are σ(2)-monotone and σ(3)-monotone, respectively.

Let us define xc
1(I; d) as the first subvector of xc(I; d) in

(27). From (34) with (37), it follows that

∂xc
1(I; d)
∂d

=
1

α
dg(αl)1L ⊗ΨI ∈ RLn×n

≥0

for all I ∈ P(N[6n]) such that AI in (26) is of full-
row rank. Thus, x∗

1(d) is σ(1)-monotone. Furthermore,
we have

∂

∂d

{
(1T

L ⊗ In)x
c
1(I; d)− d

}
= ΨI − In.

FromLemma 3, we notice that the sign pattern of ΨI−In
is the same as σ(3), and that of M(ΨI − In) is the same
as σ(2). Hence, the claim follows. □

Theorem 4 shows that v∗(d), y∗(d), and ∆y∗(d) in (16)
are σ(1), σ(2), and σ(3)-monotone, respectively. On the
basis of this theorem, the interval hulls [v∗], [y∗], and
[∆y∗] in (17) are obtained as follows. First, [v∗] is given
by

v∗ = v∗(d), v∗ = v∗(d),

which can be calculated by solving QP(d) in (1) with d
and d. In contrast, [y∗] and [∆y∗] are calculated in an
element-wise manner. For example, the ith element of
y∗ is given by

y∗
i
= y∗i (d

(i)
y ), d(i)y :=

[
d1 · · · di di+1 · · · dn

]T
where y∗i (·) denotes the ith element of y∗(·), and di and

di denote the ith elements of d and d. Note that d(i)y is
not the same for all i. Thus, for i ∈ N[n], we find the min-

imizers of QP(d) with d(i)y to calculate the elements of y∗.
In this manner, we calculate [y∗] and [∆y∗]. In conclu-
sion, we can solve the interval quadratic programming
in Section 2 with (21) and (22) by finding the minimiz-
ers of QP(d) with 4n + 2 extreme points of the interval
box [d] in (4).
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Fig. 2. Power consumption profile and confidence interval of
PV power generation prediction.

5 Numerical Experiment

5.1 Parameter Settings

In this section, we examine the efficiency of the proposed
method in solving the interval quadratic programming.
We consider the scheduling of power generation and bat-
tery charge cycles in the Tokyo area, which has 19million
consumers. In the following, we suppose that five million
consumers have PV power generators and three million
have storage batteries, whose inverter and battery ca-
pacities average 3.3 kW and 33 kWh, respectively. These
averages yield total capacities of 10 GW and 100 GWh.
Furthermore, we suppose that three types of power gen-
erators are in operation and their operations are per-
formed every 30 minutes, i.e., L = 3 and n = 48. Note
that each type of power generators represents the total
of several power generators with the same fuel cost.

The coefficients of f (l)(·) in (13) are given as

a
(1)
1 = 2.0× 10−3, a

(1)
2 = 2.0× 10−13,

a
(2)
1 = 9.0× 10−4, a

(2)
2 = 7.3× 10−13,

a
(3)
1 = 2.2× 10−3, a

(3)
2 = 2.5× 10−12,

which are determined so as to model the fuel cost func-
tions in [1] by a quadratic function [42–45]. Furthermore,
the coefficients of g(·) in (14) are given as

b1 = 2.3γ × 10−3, b2 = 2.9γ × 10−13 (46)

where γ ∈ [0, 1] is a weighting parameter described be-
low. The values in (46) are determined in compliance
with the price and durability of a standard lithium ion
battery [46]. In this formulation, γ = 1 corresponds to
the current cost and durability; thus, γ < 1 represents a
future situation in which the deterioration cost has de-
creased.

Next, we construct a confidence interval for demand pre-
diction, as in (15). For simplicity, let us suppose that the
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35

Time [h]
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]

Fig. 3. Confidence interval of demand prediction.

prediction of power consumption is exactly obtained as
one profile, whereas that of PV power generation is ob-
tained as a confidence interval. For the predicted power
consumption profile, we use observation data from 18
June, 2010 [47], which is shown by the line with triangles
in Fig. 2. The peak value of 43 GW is attained in the
evening.The confidence interval of predicted PV power
generation with the confidence level of 80% is given by
the method in [9] with meteorological data from [10].
The extreme points of the intervals are shown by the
lines with circles in Fig. 2. Note that the maximum dif-
ference between the extreme points is around 8.3 GW.
By subtracting the predicted PV power generation in-
tervals from the power consumption profile, we obtain
the confidence interval of demand shown in Fig. 3. Note
that 15 GW is subtracted in advance from the confi-
dence interval; this is covered by basis generators such
as nuclear plants.

5.2 Demand Dispatch to Power Generation and Bat-
tery Charge Cycles

On the basis of the confidence interval in Fig. 3, we
schedule power generation and battery charge cycles by
solving the interval quadratic programming. This clari-
fies the minimal required regulating capacities required
by the generators, as well as those of the battery and in-
verter capacities. In this numerical experiment, we vary
the weighting parameter γ in (46), reflecting the price of
storage batteries, and the battery charge and discharge
efficiencies ηin and ηout in (7).

First, with γ = 1 and ηin = ηout = 0.9, which corre-
spond to the current price and the charge and discharge
efficiencies of a standard battery, we calculate the in-
terval hulls for power generation, battery charge cycles,
and battery stored energy in the first, second, and third
subfigures in Fig. 4 (a), respectively. In these subfigures,
the lines with circles represent the extreme points of the
interval hull for the corresponding variables. In this case,
the use of storage batteries is not relatively significant,
because their current quality is uneconomical in com-
parison with that of power generators. As a result, the

10
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Fig. 4. Interval hulls of power generation, battery charge and discharge cycles, and battery stored energy.

regulating capacities required by the generators are rel-
atively large.

Next, with the same charge and discharge efficiency, we
set γ = 0 to simulate the situation in which the price
of storage batteries drops considerably. The results are
shown in Fig. 4 (b). From this figure we can see that the
use of storage batteries has increased compared with the
situation in Fig. 4 (a). However, the maximal regulat-
ing capacities, i.e., the maximal size of power generation
intervals, are comparable with those in Fig. 4 (a), even
though the profiles corresponding to the power genera-
tion interval hull have become flatter.

Then, we set ηin = ηout = 1 and γ = 0 to simulate the
ideal situation in which the use of storage batteries does
not result in any economic loss. This extreme case anal-
ysis shows a possible limitation for regulation capacity
reduction in a future situation where the price of bat-
teries drops and their charge and discharge efficiencies
are improved. The results are shown in Fig. 4 (c). From
this figure, we can see that the use of storage batteries
is maximized within the limits of the inverter and bat-
tery capacities. Owing to this, the required regulating
capacity is reduced, and the profile corresponding to the
power generation interval hull become almost flat.

Finally, we show the efficiency of our method in com-

parison with a brute-force approach. To this end, we
randomly sample 10,000 demand prediction profiles
from the confidence interval, and then calculate the cor-
responding optimal power generation, battery charge
cycles, and battery stored energy profiles. In Figs. 4
(a)–(c), the colour distribution between the profiles of
the interval hulls reflects the number of profiles passing
through the corresponding point. From these results,
we can see that the optimal power generation and
battery charge cycle profiles are almost uniformly dis-
tributed in the interval hulls, whereas those of battery
stored energy are non-uniformly distributed. This im-
plies that even 10,000 samples, considerably more than
the 4n+ 2 = 194 extreme points needed to calculate all
interval hulls, cannot properly capture the limits of the
optimal profiles.

6 Concluding Remarks

In this paper, we have proposed a solution method for a
class of interval quadratic programming. Our approach
is compatible with the problem of dispatching uncer-
tain predicted demand to power generation and battery
charge cycles. The interval quadratic programming was
formulated as the problem of finding the interval hull
that tightly encloses the image of an output function con-
sisting of the minimizer in a parametric quadratic pro-
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gram. To solve this problem efficiently, we developed a
novel approach based on a monotonicity analysis of this
minimizer. Furthermore, we clarified that the minimizer
in the dispatch problem of uncertain predicted demand
possesses the monotonicity property. This allowed us to
numerically verify the efficiency of the proposed method
using experimental and predicted data for power con-
sumption and PV power generation.

The validity of our approach for the interval quadratic
programming is reliant on the monotonicity property of
minimizers in the parametric quadratic program of inter-
est. In view of this, the extension of our theory to more
general dispatch problems is not necessarily straightfor-
ward. More specifically, it is not trivial to show whether
the monotonicity property of these minimizers is in-
herent in more complicated dispatch problems, such as
those involving the limitations on the amount of power
generation and the suppression of PV power generation.
One possible way to handle such a complicated problem
is to partition the parameter space into several regions,
each of which contains a locally monotonic minimizer.
The development of such a method based on parameter
space partitioning will be pursued in future work.
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