
IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. X, NO. X, ... 20XX 1

Dissipativity-Preserving Model Reduction for
Large-Scale Distributed Control Systems

Takayuki Ishizaki, Member, IEEE, Henrik Sandberg, Member, IEEE, Kenji Kashima, Member, IEEE,
Jun-ichi Imura, Member, IEEE, Kazuyuki Aihara

Abstract—We propose a dissipativity-preserving structured
model reduction method for distributed control systems. As a
fundamental tool to develop structured model reduction, we
first establish dissipativity-preserving model reduction for general
linear systems on the basis of a singular perturbation approxima-
tion. To this end, by deriving a tractable expression of singular
perturbation models, we characterize dissipativity preservation
in terms of a projection-like transformation of storage functions,
and we show that the resultant approximation error is relevant
to the sum of neglected eigenvalues of an index matrix. Next,
utilizing this dissipativity-preserving model reduction, we develop
a structured controller reduction method for distributed control
systems. The major significance of this method is to preserve the
spatial distribution of dissipative controllers and to provide an
a priori bound for the performance degradation of closed-loop
systems in terms of the H2-norm. The efficiency of the proposed
method is verified through a numerical example of vibration
suppression control for interconnected second-order systems.

Index Terms—Structured Model Reduction; Dissipativity
Preservation; Distributed Control Systems; Singular Perturba-
tion Approximation.

I. INTRODUCTION

RECENT developments in computer networking technol-
ogy have enabled us to analyze and synthesize control

systems in a spatially distributed manner. Such distributed
control system designs have good compatibility with the
spatial distribution of physical plants typically found in power
systems, building thermal systems, industrial processes, and
so forth; see [1]–[3] and references therein. In particular, over
the past several years, networked control design for cyber-
physical systems has attracted attention from academia as well
as from industry [4], [5]. Against this background, it can be
widely expected that the demands on the distributed analysis
and synthesis of physical systems will increase.

However, because many physical systems can be modeled
as large-scale (i.e., high-dimensional) dynamical systems, this
naturally makes the architecture of the associated controllers
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more complex and larger in scale. In view of this, it is desirable
that the architecture of the controllers to be simplified while
guaranteeing the performance of control systems. From a
systems-theory perspective, such a problem can be formulated
as a model reduction problem for controllers, which is called
a controller reduction problem.

A number of controller reduction methods can be found
in the literature; see [6]–[9] and references therein. However,
even though their efficiency has been intensively investigated,
the application of existing controller reduction methods to
control systems having a spatial distribution poses a challenge.
That is, the reduced controllers obtained by standard methods
do not conform to the physical restrictions imposed by the
environment, such as limitations of sensor and actuator allo-
cations. This is because the standard methods do not consider
the spatial distribution of the controllers. In this sense, a novel
structured controller reduction method is indispensable to
controller reduction for distributed control systems to comply
with physical restrictions. Note that such a structured problem
is much more challenging than the standard reduction problem
for models and controllers.

To address this difficult problem in a scalable manner, we
confine the class of systems to one that possesses a physical
property, focusing on a class of systems that dissipate some of
the physical energy (or perhaps virtual energy). Such energy
dissipation is mathematically formulated as system passivity,
which is often used for designing control systems to guar-
antee closed-loop stability [10]–[16]. The main contribution
of this paper is to develop structured controller reduction
for distributed control systems by fully taking advantage of
a passivity-based analysis. Our approach is summarized as
follows:

(i) We first develop a passivity-preserving model reduction
method for general linear systems on the basis of a singu-
lar perturbation approximation. The major result consists
in not only deriving a condition for passivity preservation
but also developing a novel H2-error analysis of the
approximation. This serves as a fundamental tool for
solving the structured controller reduction problem.

(ii) We investigate the condition under which the appropriate
structured controller reduction is achieved by directly ap-
plying the passivity-preserving model reduction to closed-
loop systems, thereby developing a structured controller
reduction method for distributed control systems.

It should be noted that our approach is entirely different from
that of the existing methods [6]–[9], most of which use a
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standard H∞-control framework, having good compatibility
with robust stability and performance analyses based on the
graph, gap and ν-metrics [17]–[19]. This novel approach
enables us to not only robustly guarantee the stability of
reduced closed-loop systems regardless of the amplitude of
controller reduction errors, but also achieve the preservation
of the spatial distribution of controllers.

To clarify our contribution, some references for structure-
preserving model reduction and the singular perturbation ap-
proximation are in order. As for structure-preserving model
reduction, [20] and [21] each address a model reduction
problem while preserving a particular system structure such as
the Lagrangian structure or the second-order structure. How-
ever, they are formulated neither on the premise of controller
reduction nor passivity preservation. On the other hand, even
though [22], [23] and [24] develop model reduction methods
with passivity preservation, they can be applied to only disjoint
subsystems or controllers. Thus, no global error bound is
provided for the approximation of interconnected systems.

As examples of one approach similar to ours, there are
singular perturbation methods based on state aggregation [25],
[26]. However, such a line of inquiry does not explicitly take
into account the effect of external inputs. By considering
input and output mappings, a structure-preserving singular
perturbation approximation is developed in [27], where an
error expression in terms of the Hankel norm is derived for
the error systems with a specific structure imposed on the
initial values. Even though the specific structure of the initial
values has good compatibility with the singular perturbation
approximation, the quality of approximation rests potentially
on a priori system decomposition into subsystems with differ-
ent time scales. It is known that the systematic implementation
of such decomposition possibly becomes an issue especially
for large-scale systems.

It should be further noted that our H2-error analysis is
different from that in [28]–[30], which use asymptotic analyses
in the time domain. In contrast to this, we analyze the
approximation error in the Laplace domain by deriving a
novel representation for the error systems, which leads to clear
insight into regulating the approximation quality of resultant
approximate models.

In addition, a state aggregation method based on network
clustering has been developed for network structure-preserving
model reduction [31]–[33]. In this method, we find a set of
states that behave similarly for input signals, called clusters,
and then, we use a block-diagonally structured projection to
construct an approximate model that preserves the intercon-
nection topology among the clusters. By incorporating the
network structure preservation into a singular perturbation
approximation, a structured controller reduction method is
developed in this paper. Furthermore, the H2-error analysis
is based on the factorization of the transfer matrix of error
systems, which corresponds to a counterpart for the state
aggregation with orthogonal projection. Finally, we provide
detailed proofs omitted in the preliminary version [34], and
conduct additional numerical experiments to compare the
performance of our method with that of existing model and
controller reduction methods.

This paper is organized as follows. In Section II, we first for-
mulate the problem of the structured controller reduction while
explaining its difficulty. In Section III, as a fundamental tool
to give a solution to the problem, we develop a dissipativity-
preserving model reduction method for general linear systems
on the basis of a singular perturbation approximation. It
should be noted that the formulation of dissipativity includes
that of passivity as a special case. The major result here
consists in not only deriving a condition for dissipativity
preservation but also developing a novel H2-error analysis of
the singular perturbation approximation in the Laplace domain.
In Section IV, we give a solution to the structured controller
reduction problem for distributed control systems utilizing
the dissipativity-preserving model reduction. Furthermore, we
provide an algorithm to systematically implement the struc-
tured controller reduction and demonstrate the efficiency of
the proposed algorithm through a numerical example, where
passive controller reduction for vibration suppression control
is considered. Finally, concluding remarks are provided in
Section V.
Notation. The following notation is used in this paper:
R set of real numbers
In n-dimensional identity matrix
tr(M) trace of a matrix M
im(M) image of a matrix M
rank(M) rank of a matrix M
M � On (M ≺ On) positive (negative) definiteness of a

symmetric matrix M ∈ R
n×n

M � On (M � On) positive (negative) semidefiniteness
of a symmetric matrix M ∈ R

n×n

The block diagonal matrix having matrices M1, . . . ,Mn on
its block diagonal is denoted by

dg(M1, . . . ,Mn) = dg(Mi)i∈{1,...,n}.

The H∞-norm of a stable proper transfer matrix G and the
H2-norm of a stable strictly proper transfer matrix G are
respectively defined by

‖G(s)‖H∞ := sup
ω∈R

σ(G(jω)),

‖G(s)‖H2
:=

(
1

2π

∫ ∞

−∞
tr(G(jω)GT(−jω))dω

) 1
2

where σ(·) denotes the maximum singular value.

II. PROBLEM FORMULATION

In this section, we formulate a structured controller re-
duction problem for large-scale physical systems. Figure 1
depicts a control system for the case where a controlled
plant and several controllers communicate through sensing and
actuation. In this system, the set of controllers is distributed
over a plant in compliance with some physical restrictions.
Examples of such a distributed control system include building
thermal systems, in which the temperature of each room is
regulated by an air-conditioning system driven on the basis of
local sensor information.
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Fig. 1. Schematic depiction of distributed control systems.

In this paper, we describe the dynamics of the distributed
control system by

Σ0 :

⎧⎨
⎩

ẋ0 = A0x0 +B0u+
∑L

l=1 b0,lwl

y = C0x0 +D0u
zl = c0,lx0,

Σl :

{
ẋl = Alxl + blzl
wl = clxl + dlzl,

l ∈ L

(1)

where Σ0 and Σl for l ∈ L := {1, . . . , L} denote a plant
and a set of controllers, u and y denote a control input and
an evaluated output, and zl and wl denote the sensor and
actuator signal associated with Σl. The signal communication
structure of this closed-loop system is depicted to the left in
Fig. 2, where z := [zT1 , . . . , z

T
L]

T and w := [wT
1 , . . . , w

T
L]

T.
In the following, we denote the distributed control system by
(Σ0, {Σl}l∈L).

With recent technical developments, the scale of systems of
interest to the control community has tended to become larger,
and this has naturally made the architecture of the associated
controllers more complex. In view of this, it is desirable that
the architecture of controllers be simplified while keeping the
performance of closed-loop systems. To formulate a controller
reduction problem, we describe the approximate model of the
distributed control system by

Σ0 :

⎧⎨
⎩

˙̂x0 = A0x̂0 +B0u+
∑L

l=1 b0,lŵl

ŷ = C0x̂0 +D0u
ẑl = c0,lx̂0,

Σ̂l :

{
˙̂xl = Âlx̂l + b̂lẑl
ŵl = ĉlx̂l + d̂lẑl,

l ∈ L,

(2)

where each original controller Σl is replaced with its approx-
imate model Σ̂l. We replace the state variable of Σ0 with x̂0,
because the trajectories of x0 and x̂0 are made different by
the approximation error of the controllers. The structure of this
approximate model is depicted to the right in Fig. 2, where
ẑ := [ẑT1 , . . . , ẑ

T
L]

T and ŵ := [ŵT
1 , . . . , ŵ

T
L]

T. In the following,
we denote the approximate model by (Σ0, {Σ̂l}l∈L). It can
easily be verified that the spatial distribution of the controllers
is preserved by this formulation. This paper is aimed at finding
a set of approximate controllers Σ̂l such that the discrepancy
between y and ŷ is sufficiently small in a suitable sense.

A simple method of realizing such a structured controller
reduction is to apply an existing model reduction method to
each controller Σl. However, this approach possibly leads

Approximate ModelOriginal System

Fig. 2. Signal communication structures of original system and approximate
model.

to an undesirable result, because the performance of the
entire control system may be degraded by even a small error
in the approximation of the controllers. More specifically,
even if each controller is well approximated, the performance
degradation of the closed-loop system may become large.
That is, even if the dynamics from z to w in Fig. 2 is well
approximated, the approximation error of the dynamics from
u to y may become large.

To address this issue, we confine the class of systems to one
that possesses a physical property, namely passive systems;
see Section III. It is known that certain interconnections of
passive components retain the passivity, thereby guaranteeing
the stability of closed-loop systems. In this sense, passivity-
based control design is especially efficient for control systems
that are complex or large-scale. With the premise of passivity
preservation, we address the following structured controller
reduction problem for distributed control systems.

Problem: Let a distributed control system (Σ0, {Σl}l∈L) in
(1) be given, and assume that the plant Σ0 and each controller
Σl are passive. Find an approximate model (Σ0, {Σ̂l}l∈L) in
(2) such that each approximate controller Σ̂l remains passive
and the discrepancy between y and ŷ is small enough in a
suitable sense.

In the formulation above, to simplify the arguments, com-
munication among controllers is not introduced in (1), with
similar results available also in the case where some com-
munication is allowed. More specifically, we can introduce
communication among controllers to (1) as

Σl :

⎧⎨
⎩

ẋl = Alxl + blzl + fl
∑L

k=1 γl,kvk
wl = clxl + dlzl
vl = glxl,

(3)

where vl denotes a communication signal among controllers,
and Γ := {γi,j} represents an interconnection structure of
controllers.

III. DISSIPATIVITY-PRESERVING SINGULAR

PERTURBATION APPROXIMATION

A. Mathematical Formulation

In this subsection, we mathematically formulate a model
reduction framework based on a singular perturbation approx-
imation. Let us consider a linear system

Σ :

{
ẋ = Ax+Bu
y = Cx+Du

(4)
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FQ(A,B,C,D;V ) :=

[
ATV + V A V B

BTV 0

]
−
[

CT 0
DT Im

]
Q

[
C D
0 Im

]
(15)

with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
q×n and D ∈ R

q×m. In
much of the literature on singular perturbation theory [28]–
[30], a time scale separation of Σ in (4) is commonly used to
motivate a singular perturbation approximation, while it is not
always assumed as exemplified by the balanced residualization
[35]–[37]. Such a time scale separation is not used in this
paper. Instead, by finding an appropriate coordinate trans-
formation, we decouple Σ into two subsystems in a general
manner. Note that [25], [26] consider a singular perturbation
approximation in a setting based on state aggregation. How-
ever, such a line of inquiry does not explicitly take into account
the effect of external inputs.

In the following, we denote the set of projection matrices
by

P n̂×n := {P ∈ R
n̂×n : PPT = In̂, n̂ ≤ n}, (5)

and we perform the coordinate transformation of Σ with a
unitary matrix [PT, P

T
]T ∈ R

n×n with P ∈ P n̂×n and P ∈
P(n−n̂)×n. Then, we have

Σ̃ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
ξ̇
η̇

]
=

[
PAPT PAP

T

PAPT PAP
T

] [
ξ
η

]
+

[
PB
PB

]
u

y =
[
CPT CP

T
] [

ξ
η

]
+Du.

(6)
To reduce the dimension of Σ̃, we impose an algebraic con-

straint on the trajectory of η. More specifically, by replacing
η̇ in (6) with zero, we obtain

0 = PAPTξ̂ + PAP
T
η̂ + PBu (7)

where η and ξ are replaced with their approximants η̂ and
ξ̂, respectively. As long as PAP

T
is nonsingular, η̂ in (7) is

obtained as

η̂ = −(PAP
T
)−1PAPTξ̂ − (PAP

T
)−1PBu. (8)

This approximation is reasonable if the convergence rate of η
is sufficiently greater than that of ξ. Substituting (8) into the
equation with respect to ξ̇, we have the singular perturbation
model

Σ̂ :

{
˙̂
ξ = Âξ̂ + B̂u

ŷ = Ĉξ̂ + D̂u
(9)

where
Â := PAPT + PAΠAPT ∈ R

n̂×n̂,

B̂ := PB + PAΠB ∈ R
n̂×m,

Ĉ := CPT + CΠAPT ∈ R
q×n̂,

D̂ := D + CΠB ∈ R
q×m,

(10)

with
Π := −PT

(PAP
T
)−1P ∈ R

n×n. (11)

Note that Π does not depend on the basis selected for the
projection P ∈ P(n−n̂)×n. This is because

Π = −PT
HT(HPAP

T
HT)−1HP

for any unitary matrix H ∈ R
(n−n̂)×(n−n̂). Thus, the singular

perturbation model Σ̂ in (9) depends only on the choice of
P ∈ P n̂×n. In the rest of this paper, the transfer matrix of Σ
is denoted by

G(s) := C(sIn −A)−1B +D, (12)

and the singular perturbation approximant of G associated with
P ∈ P n̂×n is denoted by

Ĝ(s;P ) := Ĉ(sIn̂ − Â)−1B̂ + D̂, (13)

where Â, B̂, Ĉ and D̂ are defined as in (10). In the following
subsections, we investigate how the selection of P ∈ P n̂×n

affects the property of the approximant Ĝ.

Remark 1: The singular perturbation approximation exactly
preserves the zero frequency gain of the original system for
any P ∈ P n̂×n; see Theorem 3 below for a proof. On
the other hand, it is known that the projection-based model
reduction, in which the approximate model is given by the
system matrices of PAPT, PB, CPT and D, tends to cause
a larger approximation error of the zero frequency gain, while
the infinite frequency gain is exactly preserved. In view of this,
it can be expected that in practice, the singular perturbation ap-
proximation yields a better approximation than the projection-
based model reduction, because systems appearing in practical
applications often possess a low-pass property rather than a
high-pass property.

B. Dissipativity Preservation

In this subsection, we derive a tractable condition under
which the singular perturbation approximation duly preserves
the system dissipativity. Let us begin with the following
standard definition of strict dissipativity [10]–[12].

Definition 1: A linear system Σ in (4) is said to be V -
dissipative with respect to Q = QT ∈ R

(m+q)×(m+q) if there
exists V = V T � On such that

FQ(A,B,C,D;V ) ≺ On+m (14)

where FQ is defined as in (15).

In linear systems theory, (14) is called a dissipation inequal-
ity, and the quadratic functions

fV (x) := xTV x (16)

and

sQ(y, u) :=
[
yT uT

]
Q

[
y
u

]
(17)

are called storage functions and supply functions, respectively.
It is known that the dissipation inequality is equivalent to

ḟV (x) < sQ(y, u) = yTQy,yy + 2yTQy,uu+ uTQu,uu (18)

along the trajectory of Σ in (4) for

Q =

[
Qy,y Qy,u

QT
y,u Qu,u

]
.
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Letting u(t) ≡ 0 in (18) verifies that Σ is stable whenever it is
V -dissipative with respect to any Q satisfying Qy,y � Oq . In
this case, fV in (16) can be regarded as a Lyapunov function
to prove its stability. In particular, a linear system Σ in (4) is
said to be passive if it is V -dissipative with respect to

Q =

[
0 Im
Iq 0

]
, m = q. (19)

In this sense, the formulation of dissipativity includes that of
passivity as a special case.

The following lemma, which can easily be derived from the
definition of dissipativity, is useful for the arguments made
below.

Lemma 1: Let a linear system Σ in (4) be given, and
suppose that it is V -dissipative with respect to Q. Consider
a Cholesky factor V 1

2
of V such that V = V T

1
2

V 1
2

. Then

FQ(V 1
2
AV −1

1
2

, V 1
2
B,CV −1

1
2

, D; In) ≺ On+m. (20)

Proof: It is found that FQ(A,B,C,D;V ) in (15) can be
rewritten as

Ṽ TFQ(V 1
2
AV −1

1
2

, V 1
2
B,CV −1

1
2

, D; In)Ṽ

where Ṽ := dg(V 1
2
, Im). Since V 1

2
is nonsingular, (14) is

equivalent to (20). Hence, the claim follows.

Lemma 1 shows that any V -dissipative system can be
transformed into a system that is In-dissipative with respect to
the same supply function (i.e., a dissipative system that admits
the purely quadratic function xTx as its storage function).
Therefore, without loss of generality, we can assume that any
dissipative system is In-dissipative.

In projection-based model reduction, such a particular real-
ization is useful for achieving dissipativity preservation. This
is because, for any P ∈ P n̂×n, it follows that

FQ(PAPT, PB,CPT, D; In̂)

= P̃FQ(A,B,C,D; In)P̃
T ≺ On̂+m

where P̃ := dg(P, Im), whenever (14) holds for V = In.
This implies that the approximate model is In̂-dissipative with
respect to Q whenever the original system is In-dissipative
with respect to Q.

It should be emphasized that, due to the complicated form of
Â in (10), the same conclusion for the singular perturbation ap-
proximation seems nontrivial. In fact, dissipativity preservation
for a singular perturbation approximation has not been well
investigated so far, though some results of passivity-preserving
model reduction based on interpolation are found in [23] and
[24]. In view of this, we first state the following fundamental
lemma, in which a novel representation of Â is derived. This
representation will provide insight into achieving dissipativity
preservation in the singular perturbation approximation.

Lemma 2: For any A ∈ R
n×n and P ∈ P n̂×n, Â ∈ R

n̂×n̂

in (10) admits the representation

Â = (P + PAΠ)A(P + PAΠ)T, (21)

where Π ∈ R
n×n is defined as in (11). Moreover, P+PAΠ ∈

R
n̂×n has full row rank.

Proof: First, we prove that P + PAΠ has full row rank;
namely

rank(P + PAΠ) = n̂. (22)

We prove this by contradiction. If rank(P + PAΠ) < n̂ is
assumed, then we obtain

rank((P + PAΠ)PTP )

≤ min(rank(P + PAΠ), rank(PTP )) < n̂.

However, this contradicts

rank((P + PAΠ)PTP ) = rank(P ) = n̂,

which follows from ΠPT = 0 and PPT = In̂. Thus, (22)
follows.

Next, we prove the claim for Â in (21). First, we show that

ÂP = (P + PAΠ)A. (23)

To this end, it suffices to show that ÂP − (P +PAΠ)A = 0.
Using the relation of

−ΠAPT
= P

T
(PAP

T
)−1PAP

T
= P

T
, (24)

we obtain

ÂP − (P + PAΠ)A = PA{(In +ΠA)PTP − (In +ΠA)}
= PA(In +ΠA)P

T
P

= PAP
T
P − PAP

T
P

= 0.

Hence, (23) follows. Multiplying (23) by PT from the right
side, we obtain

Â = (P + PAΠ)APT

= (P + PAΠ)A(P + PAΠ)T − (P + PAΠ)A(PAΠ)T.

Furthermore, using (24) and

Π = ΠP
T
P , (25)

we obtain

(P + PAΠ)A(PAΠ)T = (P + PAΠ)A(PAΠP
T
P )T

= {PAP
T
P − PAP

T
P}(PAΠ)T

= 0.

Thus, (21) follows.

Lemma 2 shows that Â in Σ̂ admits a projection-like formula
as in (21). In addition, we note that B̂ in (10) can be rewritten
as

B̂ = (P + PAΠ)B. (26)

However, Ĉ is not equal to C(P + PAΠ)T in general. Con-
sidering these facts, we can successfully derive the following
theorem on dissipativity preservation.

Theorem 1: Let a linear system Σ in (4) be given, and sup-
pose that it is In-dissipative with respect to Q. If P ∈ P n̂×n

satisfies
im(CT) ⊆ im(PT), (27)

then the singular perturbation model Σ̂ in (13) is In̂-dissipative
with respect to Q.
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G(s)− Ĝ(s;P ) = −Ĉ(sIn̂ − Â)−1PAΠP
T
PA(sIn −A)−1B − CΠP

T
PB

−Ĉ(sIn̂ − Â)−1PAΠP
T
PB − CΠP

T
PA(sIn −A)−1B

=
[
Ĉ(sIn̂ − Â)−1(P + PAΠ) + CΠ

]
P

T
P
[−A(sIn −A)−1B −B

] (32)

Proof: If (27) holds, it follows that CTPTP = CT. Using

PTP + P
T
P = In,

we have CP
T

= 0, which implies that CΠ = CΠT = 0.
Thus, it follows that

Ĉ = CPT = C(P + PAΠ)T, D̂ = D.

Noting that (26) holds, we can verify with Lemma 2 that

FQ(Â, B̂, Ĉ, D̂; In̂) = P̃FQ(A,B,C,D; In)P̃
T

where P̃ := dg(P + PAΠ, Im). Its negative definiteness
follows in that (14) holds for V = In and P + PAΠ has full
row rank as shown in Lemma 2. Hence, the claim follows.

Theorem 1 shows that, if the original system Σ is In-
dissipative with respect to a supply function, then the singular
perturbation model Σ̂ is In̂-dissipative with respect to the same
supply function as long as (27) holds. Note that condition
(27) can easily be satisfied by adding the basis of im(CT) to
im(PT).

Remark 2: From systems theory, it is known that system
dissipativity admits a characterization in terms of a frequency
domain inequality. More specifically, if Σ in (4) is V -
dissipative with respect to Q, then

[
GT(−jω) Im

]
Q

[
G(jω)
Im

]
� Om, ∀ω ∈ R, (28)

where G in (12) is the transfer matrix of Σ. This frequency
domain characterization is often utilized in H2/H∞-control
synthesis, for example. In view of this, the dissipativity
preservation in Theorem 1 can be rephrased as the preservation
of a frequency property specified by (28).

Remark 3: In Definition 1, we have introduced the strict
notion of dissipativity; that is, the definiteness of V and FQ in
(14) is assumed to be strict. Consequently, the existence of the
Cholesky factorization of V is ensured, and therefore, the dis-
sipativity is characterized without a controllability assumption
[10]–[12]. A generalization of the dissipativity preservation
to the case of semidefinite V and FQ is currently under
investigation.

C. Approximation Error Analysis

In this subsection, we analyze the approximation error
caused by the singular perturbation approximation. In the
literature on singular perturbation theory, most of the error
analyses are performed in the time domain by using asymp-
totic analysis [25], [26], [28]–[30], or on the basis of the
balanced realization [35]–[37]. By contrast, we analyze the
approximation error in the Laplace domain without relying on
asymptotic analysis or the balanced realization. To this end,

a novel representation for the error system is derived in the
following theorem.

Theorem 2: Let a transfer matrix G in (12) be given,
and define the singular perturbation approximant Ĝ in (13)
associated with P ∈ P n̂×n. Then

G(s)− Ĝ(s;P ) = Ξ̂(s;P )P
T
PX(s) (29)

where

Ξ̂(s;P ) := Ĉ(sIn̂ − Â)−1(P + PAΠ) + CΠ,

X(s) := −A(sIn −A)−1B −B,
(30)

with Â and Ĉ defined as in (10).

Proof: Denote the error system by

G(s)− Ĝ(s;P ) = Ce(sIn+n̂ −Ae)
−1Be +De

where Ae = dg(Â, A), Be = [B̂T, BT]T, Ce = [−Ĉ, C] and
De = −D̂ +D. Considering the similarity transformation of
the error system with

T =

[
In̂ −P
0 In

]
, T−1 =

[
In̂ P
0 In

]
,

we have

TAeT
−1 =

[
Â ÂP − PA
0 A

]
, TBe =

[
PAΠP

T
PB

B

]

CeT
−1 =

[ −Ĉ −ĈP + C
]
, De = −CΠB,

(31)
where In − PTP = P

T
P has been invoked. Using (23) and

(25), we have

ÂP − PA = PAΠP
T
PA.

Furthermore, using (24), we obtain

−ĈP + C = C(In − PTP )− CΠAPTP

= CP
T
P − CΠA(In − P

T
P )

= CP
T
P − CΠA+ CΠAP

T
P

= CP
T
P − CΠA− CP

T
P

= −CΠA.

Thus, the block structure of (31) implies that the error system
is given by (32), which proves (29).

The factorization of the error system in Theorem 2, which
can be applied even to unstable systems, provides a qualitative
insight into the error analysis. That is, from the cascaded
form of (29), we expect that the resultant approximation error
will be small if the norm of P

T
PX is sufficiently small, and

the norm of Ξ̂ is bounded. Note that X in (30) coincides
with the transfer matrix from u to −ẋ for the original Σ
and an appropriate selection of P ∈ P n̂×n can regulate the
norm of P

T
PX . Conversely, the norm of Ξ̂ in (30) cannot
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be arbitrarily small because it coincides with the singular
perturbation approximant of

Ξ(s) = C(sIn −A)−1

associated with P . This corresponds to the state-to-output
mapping of the original Σ.

Now, we are ready to state the main result of this section.
By utilizing Theorem 2 in conjunction with Theorem 1,
we establish the following theorem relevant to dissipativity-
preserving model reduction that admits an a priori H2-error
bound.

Theorem 3: Let a linear system Σ in (4) be given, and
suppose that it is In-dissipative with respect to Q satisfying
Qy,y � Oq for (17). Let γ > 0 such that

A+AT + γ−1(In + CTC) ≺ On. (33)

Furthermore, let the controllability gramian W = WT � On

such that
AW +WAT +BBT = 0. (34)

If P ∈ P n̂×n satisfies

im([B,CT]) ⊆ im(PT), tr(Φ)− tr(PΦPT) ≤ ε2 (35)

where
Φ := AWAT ∈ R

n×n, (36)

then the singular perturbation model Σ̂ in (9) is In̂-dissipative
with respect to Q and satisfies

G(0) = Ĝ(0;P ), ‖G(s)− Ĝ(s;P )‖H2
≤ γε (37)

where G and Ĝ are defined as in (12) and (13), respectively.

Proof: Owing to (35), if Σ is In-dissipative with respect
to Q, then Σ̂ is In̂-dissipative with respect to Q, as shown in
Theorem 1. Note that both Σ and Σ̂ are stable because they are
In-dissipative and In̂-dissipative with respect to Q satisfying
Qy,y � Oq .

Next, we prove (37). Using Theorem 2, we have

‖G(s)− Ĝ(s;P )‖H2
≤ ‖Ξ̂(s;P )‖H∞‖P

T
PX(s)‖H2

where Ξ̂ and X are defined as in (30). Note that the first
condition in (35) implies that PB = 0 for the feedthrough
term of PX . Furthermore, the second condition in (35) implies
that

tr(Φ)− tr(PΦPT) = tr(PΦP
T
) ≤ ε2.

Thus

‖PT
PX(s)‖H2

=

√
tr(P

T
PAWATP

T
P )

=

√
tr(PΦP

T
) ≤ ε

is ensured; see [38] for the calculation of the H2-norm.
In what follows, we prove that

‖Ξ̂(s;P )‖H∞ < γ (38)

by virtue of (33) and the first condition in (35). Note that,
because A + AT ≺ On owing to the In-dissipativity of Σ,
there always exists some γ > 0 such that (33). Furthermore,
the feedthrough term CΠ of Ξ̂ is equal to zero because the first

condition in (35) holds. Thus, from the bounded real lemma
[38], it follows that ‖Ξ̂‖H∞ < γ if there exists V̂ = V̂ T � On̂

such that

V̂ Â+ ÂTV̂ + γ−1
{
V̂ P̃ P̃TV̂ + ĈTĈ

}
≺ On̂, (39)

where P̃ := P + PAΠ. We suppose that the explicit solution
is V̂ = In̂. Given that Ĉ = CPT = CP̃T, (39) with V̂ = In̂
becomes

P̃
{
A+AT + γ−1(In + CTC)

}
P̃T ≺ On̂.

Note that this strict inequality is ensured by (33) because P̃
has full row rank as shown in Lemma 2. Hence, (38) follows
for any P satisfying the first condition in (35). Finally, by
X(0) = 0 in (29), G(0) = Ĝ(0;P ) is proven.

Theorem 3 shows that the singular perturbation approxima-
tion admits the a priori error bound in (37). Note that the value
of γ in (37) corresponds to an upper bound for the gain of the
state-to-output mapping of the singular perturbation model.

Furthermore, to find P ∈ P n̂×n with an appropriate dimen-
sion n̂ satisfying (35), we can use the following procedure
for a prescribed ε: First, we find the set {(λi, vi)}i∈{1,...,n}
of all eigenpairs of Φ in (36), where it is assumed without
loss of generality that λi ≥ λi+1 and ‖vi‖ = 1. Next, we find
k ∈ {1, . . . , n} such that

n∑
i=k+1

λi ≤ ε2, (40)

and construct Vk = [v1, . . . , vk] ∈ Pn×k. Note that k is
determined as being compatible with the prescribed ε. Finally,
by the Gram-Schmidt process, we derive P ∈ P n̂×n such that

im(PT) = im([Vk, B,CT]).

This projection matrix P produces a singular perturbation
model having the dimension of n̂ = rank([Vk, B,CT]).

It is worth noting that the resultant approximation error is
related to the sum of neglected eigenvalues of Φ as shown in
(40). The major significance of Theorem 3 is the theoretical
revelation that ε, which corresponds to the threshold of ne-
glected eigenvalues of Φ, can be used as a design parameter
to regulate the approximating quality as well as an appropriate
dimension of resultant singular perturbation models.

Remark 4: By replacing the matrices B, C and D in (15)
with empty matrices, we notice that the dissipation inequality
in (14) can be reduced to the standard Lyapunov inequality

ATV + V A ≺ On. (41)

Thus all the results derived above can be straightforwardly
applied as a stability-preserving model reduction method for
any stable system that admits a Lyapunov function as fV in
(16). Note that the first condition in (35) is not necessary to
guarantee the stability of approximants, but it is necessary to
prove the a priori error bound in (37).

Remark 5: The results derived in Sections III-B and III-C
are based on the input-to-state mapping approximation. This
can be verified from the facts that P + PAΠ being a factor
of Â in (21) is compatible with B̂ = (P + PAΠ)B, and that
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P
T
PX in (29) consists of P , A and B. In fact, through dual

arguments, it is possible to derive the same results based on the
state-to-output mapping approximation by replacing (A,B,C)
with (AT, CT, BT).

IV. STRUCTURED CONTROLLER REDUCTION FOR

DISTRIBUTED CONTROL SYSTEMS

A. Singular Perturbation Approximation of Distributed Con-
trol Systems

In this subsection, the controller reduction for distributed
control systems described in Section II will be realized
through the singular perturbation approximation associated
with a structured projection matrix P ∈ P n̂×n. By taking
x = [xT

0 , x
T
1 , . . . , x

T
L]

T as the state variable, it is verified that
the distributed control system (Σ0, {Σl}l∈L) in (1) can be
described by Σ in (4) with the structured system matrices

A =

[
A0 + b0,Ldg(dl)l∈Lc0,L b0,Ldg(cl)l∈L

dg(bl)l∈Lc0,L dg(Al)l∈L

]
,

B =

[
B0

0

]
, C =

[
C0 0

]
, D = D0,

(42)

where b0,L := [b0,1, . . . , b0,L] and c0,L := [cT0,1, . . . , c
T
0,L]

T.
In what follows, we denote the dimensions of the plant Σ0

and each controller Σl by n0 and nl, respectively, and we let
n := n0 +

∑L
l=1nl.

In general, the signal communication structure is destroyed
by the direct application of singular perturbation approxima-
tions associated with an unstructured P ∈ P n̂×n to the above
structured system. In fact, the same difficulty is confronted by
most traditional model reduction methods such as the balanced
truncation, the Hankel-norm approximation, and the Krylov
subspace methods [38].

Moreover, it is not clear whether there exists some P such
that the singular perturbation approximation of Σ with (42)
retains its structure. In view of this, we show in the following
lemma that the singular perturbation approximation achieves
the structured controller reduction by imposing a specific
structure on P . It should be emphasized that this is nontrivial
because the singular perturbation model Σ̂ in (9) includes the
matrix inverse (PAP

T
)−1, which possibly becomes a dense

matrix even if some sparse structure is imposed on P ∈ P n̂×n.

Lemma 3: Let a distributed control system (Σ0, {Σl}l∈L)
in (1) be given, and describe it by Σ in (4) with the system
matrices in (42). Let Σ̂l be the singular perturbation model
of the controller Σl associated with pl ∈ P n̂l×nl . Then, the
singular perturbation model Σ̂ in (9) associated with

P = dg(In0
, p1, . . . , pL) ∈ P n̂×n, n̂ := n0 +

L∑
l=1

n̂l (43)

coincides with the approximate model (Σ0, {Σ̂l}l∈L) in (2).

Proof: For each l ∈ L, let pl ∈ P(nl−n̂l)×nl such that
[pTl , p

T
l ]

T ∈ R
nl×nl is unitary. To prove the claim, it suffices

to show that Σ̂ in (9) is given by the system matrices

Â =

[
A0 + b0,Ldg(d̂l)l∈Lc0,L b0,Ldg(ĉl)l∈L

dg(b̂l)l∈Lc0,L dg(Âl)l∈L

]
,

B̂ =

[
B0

0

]
, Ĉ =

[
C0 0

]
, D̂ = D0,

(44)

where

Âl := plAlp
T
l + plAlπlAlp

T
l , b̂l := (pl + plAlπl)bl,

ĉl := cl(p
T
l + πlAlp

T
l ), d̂l := dl + clπlbl

with πl := −pTl (plAlp
T
l )

−1pl. Note that the structure of P in
(43) allows for its orthogonal complement to have the form

P =
[
0 dg(p1, . . . , pL)

] ∈ P(n−n̂)×n. (45)

Thus, because PB = 0 and CP
T
= 0, it readily follows that

B̂ = PB, Ĉ = CPT, D̂ = D.

This proves the claim for B̂, Ĉ, and D̂ in (44). In addition,
because of the specific structures of P and P , it follows that

PAPT =

[
A0 + b0,Ldg(dl)l∈Lc0,L b0,Ldg(clp

T
l )l∈L

dg(plbl)l∈Lc0,L dg(plAlp
T
l )l∈L

]
,

PAP
T
=

[
b0,Ldg(clp

T
l )l∈L

dg(plAlp
T
l )l∈L

]
,

PAPT =
[
dg(plbl)l∈Lc0,L dg(plAlp

T
l )l∈L

]
,

PAP
T
= dg(plAlp

T
l )l∈L.

Note that

(PAP
T
)−1 = dg

(
(plAlp

T
l )

−1
)
l∈L

. (46)

Thus, Â = PAPT − PAP
T
(PAP

T
)−1PAPT is given by

(44).

Lemma 3 shows that, if a block-diagonal structure as in (43)
is imposed on P , then the singular perturbation approximation
of Σ with (42) leads to the singular perturbation approximation
of each of controllers Σl. This result is derived from the
fact that the particular structure of P in (43) is compatible
with A in (42), and leads to the block-diagonal structure
of the matrix inverse (PAP

T
)−1 as shown in (46). In this

sense, the structured singular perturbation approximation has
good compatibility with the controller reduction problem for
distributed control systems.

It should be noted that a result similar to Lemma 3 is
available even if some communication among controllers is
allowed. More specifically, if

im([fl, g
T
l ]) ⊆ im(pTl ), ∀l ∈ L,

where fl and gl are the parameters of the controller Σl in
(3), then the singular perturbation model Σ̂ in (9) associated
with P in (43) coincides with the approximation model
(Σ0, {Σ̂l}l∈L) in (2) that retains the communication structure
among controllers.
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B. Error Analysis for Structured Controller Reduction

In this subsection, we develop a structured controller re-
duction method for distributed control systems utilizing the
dissipativity-preserving model reduction in Section III. To this
end, we introduce the notion of dissipative system intercon-
nection [10]–[12].

Definition 2: A distributed control system (Σ0, {Σl}l∈L) in
(1) is said to be neutral associated with (V0, {Vl}l∈L) if the
following conditions hold:

• The internal system

Σ
(z,w)
0 :

{
ẋ0 = A0x0 + b0,Lw
z = c0,Lx0

(47)

is V0-dissipative with respect to Q0.
• Each controller Σl is Vl-dissipative with respect to Ql.
• The set of supply functions defined as in (17) satisfies

sQ0
(z, w) +

L∑
l=1

sQl
(wl, zl) = 0 (48)

where z = [zT1 , . . . , z
T
L]

T and w = [wT
1 , . . . , w

T
L]

T.

In systems theory, the equality in (48) is called the neutrality
condition of dissipative system interconnection. Note that an
interconnected system composed of dissipative subsystems
is not necessarily dissipative, and the neutrality of inter-
connection is known as a natural condition to guarantee its
dissipativity. Examples of neutral interconnection include the
negative feedback interconnection of passive systems and the
positive feedback interconnection of bounded real systems. To
see this, let us consider the case where two dissipative systems
are interconnected. Namely, consider the neutrality condition

sQ1
(y1, u1) + sQ2

(y2, u2) = 0

under the interconnection of u1 = y2 ∈ R
m1 and u2 = y1 ∈

R
m2 . This condition is satisfied for the negative feedback in-

terconnection of any passive systems, i.e., dissipative systems
with respect to

Q1 =

[
0 Im1

Im1
0

]
, Q2 = −

[
0 Im2

Im2
0

]
.

It is also satisfied for the positive feedback interconnection of
bounded real systems, i.e., dissipative systems with respect to

Q1 =

[ −γ2Im1
0

0 Im2

]
, Q2 =

[ −Im2
0

0 γ2Im1

]
.

Generalization to the interconnection of more than two sys-
tems straightforwardly follows from the same argument.

Furthermore, it can be verified with Lemma 1 that, by
a coordinate transformation of each controller, any neutral
distributed control system (Σ0, {Σl}l∈L) can be transformed
to one that is neutral associated with (V0, {Inl

}l∈L); namely,
every controller Σl can be Inl

-dissipative. Therefore, without
loss of generality, we can assume that any neutral distributed
control system is neutral associated with (V0, {Inl

}l∈L).
On the basis of these facts, we state the main theorem of this

section. Combining all the results derived above, we develop a
structured controller reduction method for distributed control
systems.

Theorem 4: Let a distributed control system (Σ0, {Σl}l∈L)
in (1) be given, and suppose that it is neutral associated with
(V0, {Inl

}l∈L). Describe (Σ0, {Σl}l∈L) by Σ in (4) with the
system matrices in (42), and let γ > 0 such that

V A+ATV + γ−1(V 2 + CTC) ≺ On (49)

where
V := dg(V0, In1

, . . . , InL
). (50)

Furthermore, let Σ̂l be the singular perturbation model of
each controller Σl associated with pl ∈ P n̂l×nl . If P in (43)
satisfies

im(cTl ) ⊆ im(pTl ),

L∑
l=1

{
tr([Φ]l)− tr(pl[Φ]lp

T
l )
} ≤ ε2

(51)
where [Φ]l ∈ R

nl×nl denotes the principal submatrix of Φ in
(36) compatible with Σl, then the singular perturbation model
Σ̂ in (9) satisfies (37) and coincides with an approximate
model (Σ0, {Σ̂l}l∈L) in (2) that is neutral associated with
(V0, {In̂l

}l∈L).

Proof: We prove the claim with an argument similar to
the proof of Theorem 3. As shown in Lemma 3, the singular
perturbation approximation of Σ associated with P in (43) ex-
actly coincides with that of the controller Σl associated with pl
for each l ∈ L. In addition, by using Theorem 1 with the first
condition in (51), we can verify that the approximation of each
Inl

-dissipative Σl yields an In̂l
-dissipative Σ̂l with respect to

the same Ql. Thus, the approximate model (Σ0, {Σ̂l}l∈L) is
neutral associated with (V0, {In̂l

}l∈L) whenever the original
(Σ0, {Σl}l∈L) is neutral associated with (V0, {Inl

}l∈L).
Next, we prove that (38) is ensured by (49). From (18), it

follows that

ḟV0
(x0) < sQ0

(z, w), ḟInl
(xl) < sQl

(wl, zl), l ∈ L.

Thus, by (48), we obtain

ḟV0
(x0) +

L∑
l=1

ḟInl
(xl) < sQ0

(z, w) +

L∑
l=1

sQl
(wl, zl) = 0.

This implies that fV (x) is a Lyapunov function of Σ. That is,
Σ admits the Lyapunov function fV (x) in (16) for V in (50),
owing to the neutrality associated with (V0, {Inl

}l∈L).
Since V A+ATV ≺ On, there exists some γ > 0 such that

(49). Noting that P̃ V = V̂ P̃ where

P̃ := P + PAΠ, V̂ := dg(V0, In̂1
, . . . , In̂L

),

we verify that (39) with the explicit solution V̂ becomes

P̃
{
V A+ATV + γ−1(V 2 + CTC)

}
P̃T ≺ On̂,

where the strict inequality is ensured by (49). Hence, (38)
follows. Finally, owing to the block-diagonal structure of P
in (43), the second condition in (35) reduces to that in (51).
Hence, the claim follows.

Theorem 4 shows that the structured controller reduction
appropriately preserves the neutrality of dissipative control
systems, which can be interpreted as the passivity of the con-
trollers. Furthermore, the performance degradation of closed-
loop systems can be evaluated in terms of the H2-norm.
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For a given distributed control system (Σ0, {Σl}l∈L), which
is assumed to be neutral associated with (V0, {Inl

}l∈L), Fig. 3
lists an algorithm to find P in (43) such that (51) holds for a
prescribed ε ≥ 0. In this algorithm, the prescribed ε is used
as a threshold for the eigenvalues of [Φ]l to be neglected. The
case is similar to that of the balanced truncation, in which
the Hankel singular values to be neglected are determined
according to a prescribed threshold.

The major advantage of the algorithm is that ε can be used
as a design parameter to regulate the approximating quality of
the structured controller reduction. Moreover, it automatically
finds an appropriate dimension of each approximate controller
by considering the dynamical behavior of the set of distributed
controllers as well as the controlled plant. Note that such a
determination of appropriate controller dimension cannot be
achieved by the simple application of an existing model reduc-
tion method to each disconnected controller. This advantage
will be demonstrated in a numerical example in Section IV-C
below.

Additionally, a discussion on the conservativeness of the
a priori error bound seems in order. Indeed, even though
Theorem 4 provides a theoretically reasonable strategy to find
P ∈ P n̂×n, the error bound in (37), which can be calculated
before the approximation, may become conservative, espe-
cially in a large-scale setting. This is because no information
on P and P is taken into account to derive the upper bound
of γ in (49).

To compensate for this weakness, we propose an efficient
way to calculate the approximation error by utilizing the
cascaded form of the error system denoted in Theorem 2.
For a fixed P ∈ P n̂×n satisfying the first condition in (35),
let X � On̂ and Y ∈ R

n̂×n be solutions of the Lyapunov and
Sylvester equations{

ÂX + X ÂT + ZYT + YZT = 0

ÂY + YAT + ZW = 0,
(52)

where Z := (P + PAΠ)P
T
PA, and W � On is the

solution of (34). Since we only need to find the lower-
dimensional solutions X and Y individually, the equations in
(52) can be solved more efficiently than the Lyapunov equation
with respect to the (n + n̂)-dimensional error system, whose
controllability gramian in the cascaded realization is given by[ X Y

YT W
]
∈ R

(n+n̂)×(n+n̂).

Note that W should be obtained in advance to find P ; see the
algorithm in Fig. 3. Then, the approximation error in terms of
the H2-norm is calculated with

‖G(s)− Ĝ(s;P )‖H2
=

√
tr(ĈX ĈT). (53)

By the algorithm in Fig 3 in conjunction with this a posteriori
error calculation, a solution to the problem of the structured
controller reduction in Section II is provided as follows:

(a) Prescribe the admissible error δ ≥ 0.
(b) For a fixed ε ≥ 0, execute the algorithm in Fig 3

to find P ∈ P n̂×n in (43) satisfying (51), where the
controllability gramian W � On in (34) is obtained.

(c) Find X ∈ R
n̂×n̂ by solving the Lyapunov and Sylvester

equations in (52).
(d) Calculate the resultant approximation error ‖G − Ĝ‖H2

from (53).
(e) If the approximation error is not less than δ, then return

to (b) after setting a smaller ε.

The efficiency of this controller reduction procedure is demon-
strated through a numerical example in Section IV-C.

For the implementability of this procedure, we give an
additional note on the computational cost of finding the
controllability gramian W . Even though the computation of
W possibly becomes time consuming in a large-scale setting,
some effective methods for solving large-scale Lyapunov equa-
tions are available from the literature. For example, [39] uti-
lizes a Krylov subspace method, known as a computationally
efficient method for model reduction. As a similar approach,
[40] and [41] develop approximate solution algorithms by
explicitly considering the sparsity and low-rankness of system
matrices.

Finally, we clarify the contribution of this paper in com-
parison with existing model reduction methods and its gen-
eralization to structured ones. In model reduction theory, it
often becomes an issue that a resultant approximate model
is possibly unstable even if the original system is stable. To
guarantee the stability of approximants, a rigid transformation,
such as a balancing transformation, is generally required [37],
[38]. Even though such a transformation is reliable in the
approximation of disconnected systems, it is not necessarily
flexible for a generalization to interconnected system approx-
imation. Indeed, in structured model reduction [42], [43], to
ensure the stability of approximate models and the existence
of an a priori error bound, we need to impose a block-diagonal
structure on the solutions of linear matrix inequalities, whose
feasibility is not always guaranteed.

Nonetheless, we have shown in Section III that a trans-
formation based on a storage function is sufficient for the
stability preservation in the singular perturbation approxima-
tion. This relaxation allows us to enhance its applicability
to interconnected systems. Note, however, that an intercon-
nected system does not always admit a disjoint Lyapunov
function with respect to each subsystem, even if all subsystems
are stable. Our success in developing the network structure-
preserving model reduction method is the focus on the class of
systems composed of the neutral interconnection of dissipative
subsystems, which admits the Lyapunov function fV in (16)
for the block-diagonal matrix V in (50). In addition, deriving
the factorization of error systems as in Theorem 2, which is
valid for any structured projection matrix P , we have shown
the existence of an a priori error bound in Theorem 4.

Remark 6: In Definition 2, it is supposed that the internal
system Σ

(z,w)
0 admits the strict notion of dissipativity intro-

duced in Definition 1. It should be noted that, even if the
strict dissipativity of Σ

(z,w)
0 is replaced with a weak notion

of dissipativity, called semidissipativity, all results derived in
this section are still valid. The definition of semidissipativity
is as follows: A linear system Σ in (4) is said to be V -
semidissipative with respect to Q if (A,B) is controllable
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Input: ε ≥ 0, (Σ0, {Σl}l∈L) in (1) described by Σ in (4) with (42)
Output: P in (43) such that (51)

1: Find W such that (34)
2: Φ← AWAT

3: Find Λ and V such that dg([Φ]l)l∈LV = V TΛ
4: [Λ̃, I] = sort(diag(Λ),‘descend’)
5: λ← Λ̃(1), J ← I(1)
6: while tr(Λ)− λ > ε2 do
7: λ← λ+ Λ̃(|J |), J ← {J , I(i)}
8: end while
9: N ← n1 + · · ·+ nL, N̂ ← |J |

10: I = eye(N), eJ ← I(:,J )
11: Find P̃ ∈ PN̂×N such that im(P̃T) = im([V eJ , dg(cTl )l∈L])
12: P ← dg(In0

, P̃ )

Fig. 3. MATLAB style pseudo-code to find projection matrix for singular perturbation approximation. (The fourth line sorts the diagonal elements of Λ
in descending order, and stores the ordered values and indices to Λ̃ and I. The tenth line stores the column vectors of the N -dimensional identity matrix
compatible with J to eJ , which is used to select the associated column vectors of V in the eleventh line.)

and there exists V = V T � On such that (14) holds
with nonstrict inequality. Similarly to the strict notion of
dissipativity, the notion of a V -semidissipative system satisfies
(18) with nonstrict inequality.

C. Numerical Example

In this subsection, we demonstrate the efficiency of our
method through a numerical example. Let us consider the
following mass-spring-damper system{

Mζ̈ +Rζ̇ +Kζ = Fw

z = Hζ̇
(54)

where M � Oν denotes a diagonal mass matrix, R � Oν

denotes a diagonal damper matrix, K � Oν denotes a spring
stiffness matrix, F ∈ R

ν×m denotes a matrix describing
actuator allocation, and H ∈ R

q×ν denotes a matrix describing
sensor allocation. This second-order system is often used as
a primary model of flexible mechanical systems in vibration
suppression control [13], [44] and in rotor dynamics for power
system stabilization [45], [46].

Let x0 := [ζT, ζ̇T]T ∈ R
2ν be the state variable of Σ0 in

(1). Then, we have the 2ν-dimensional internal system Σ
(z,w)
0

in (47), with

A0 =

[
0 Iν

−M−1K −M−1R

]
, b0,L =

[
0

M−1F

]
,

c0,L =
[
0 H

]
.

It is shown in [13] that this Σ(z,w)
0 is passive as long as the in-

put and output are collocated, namely F = HT, and (A0, b0,L)
is controllable. More specifically, for V0 = dg(K−1,M−1),
this Σ

(z,w)
0 is V0-semidissipative with respect to Q in (19);

see Remark 6 about semidissipativity. In what follows, by
supposing that the system in (54) has some spatial distribution,
we consider the distributed control of vibration suppression for
(54). Such distributed control is reasonable in the sense that
sensor and actuator allocation is often limited by complying

with some physical restrictions, as in vibration suppression for
bridges [47].

Let us consider a case where 125 mass components are
coupled. For this 250-dimensional passive system, we specify
the coefficient matrices in (54) as

M =
1

5
I125, F = HT = dg (e1, . . . , e1) ,

K =
1

2

⎡
⎢⎢⎢⎢⎣

2 −1
−1 2

. . .
. . .

. . . −1
−1 2

⎤
⎥⎥⎥⎥⎦ ,

R =
1

4
dg(I25, rI25, r

2I25, r
3I25, r

4I25),

(55)

where r = 3/10 and e1 denotes the first column of I25.
Furthermore, we take the evaluated output as y = z ∈ R

5.
This system is depicted in Fig. 4, where w = [w1, , . . . , w5]

T,
y = [y1, . . . , y5]

T, z = [z1, . . . , z5]
T, and ζ = [ζ1, . . . , ζ125]

T.
For this plant Σ0, we construct a set of passive controllers

Σl for l ∈ {1, . . . , 5}. To this end, we apply the passive
controller synthesis proposed in [14] to each of the truncated
(disconnected) subplants Σl

0 for l ∈ {1, . . . , 5} shown in
Fig. 4. As a result, we obtain a set of 50-dimensional original
passive controllers. Indeed, such a disconnective approach to
distributed control design is often taken in generator control
for power networks. The outputs with and without control are
shown in Fig. 5 by the solid and dot-dashed lines, respectively,
where the initial condition x0(0) of the plant is random. We
can see from this figure that the convergence rate of the system
outputs with and without controllers becomes higher in the
order of y5 to y1. This comes from the gradual variation of
the damping coefficients of R in (55).

Next, we reduce the dimension of each controller by using
our structured controller reduction method while keeping the
behavior of the closed-loop system. To guarantee the perfor-
mance for any initial condition x0(0), we apply the dual coun-
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Fig. 4. Mass-spring-damper system with distributed passive control.
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Fig. 5. Output signals of passive mass-spring-damper system.

terpart of Theorem 4 to this control system. More specifically,
to approximate the state-to-output mapping defined by (A,C)
in (42) with C0 = c0,L, we use Theorem 4 by replacing
(A,B) with (AT, CT). Furthermore, we regard B0 in (42)
as In, which reflects arbitrary initial condition.

In Fig. 6, plots of the eigenvalues of [Φ]l in (51) are shown
for each l ∈ {1, . . . , 5}. From this figure, we can see that the
decay rate of the eigenvalues becomes faster in the order of
[Φ]5 to [Φ]1. This characteristic indicates that the dimension of
passive controllers with lower indices, e.g., Σ1 and Σ2, can be
more significantly reduced with a small approximation error.

We implement the controller reduction procedure proposed
in Section IV-B. Let us prescribe the admissible error by δ =
0.47, which corresponds to the 5% relative H2-error. In Fig. 7,
against each value of ε, we plot the resultant dimensions of the
approximate controllers Σ̂l for l ∈ {1, . . . , 5}. Furthermore, by
the line with squares, in Fig. 8, we plot the resultant relative
errors, i.e., ‖G− Ĝ‖H2

/‖G‖H2
, which is the value from (53).

These figures show that the dimension of the approximate con-
trollers increases, and the approximation error appropriately
decreases, as ε decreases. Note that the dimension of each
approximate controller is automatically determined for each
value of ε with the dynamics of the controllers as well as that
of the controlled plant being explicitly considered. This result
thus confirms that the value of ε, which corresponds to the
threshold of the eigenvalues of [Φ]l, successfully captures the
degree of performance degradation.

When ε = 5.3, the original 50-dimensional passive con-

trollers Σl for l ∈ {1, . . . , 5} are reduced to 5-, 3-, 9-, 13- and
24-dimensional versions Σ̂l, and the resultant approximation
error is ‖G− Ĝ‖H2

= 0.34, which is less than the prescribed
δ. The output of the closed-loop system with the approximate
passive controllers is overplotted in Fig. 5 with the dashed
lines. We can see that the dimension of the passive controllers
is appropriately reduced almost without affecting the behavior
of the closed-loop system.

For comparison, we show results when using some other
model/controller reduction methods. As standard model re-
duction methods, not directly dealing with the structured con-
troller reduction problem, we implement a passivity-preserving
Krylov subspace method [48], which is known as a major
reduction method for passive RLC circuits, and the balanced
residualization [35], [37], which is implemented as a singular
perturbation approximation of the balanced realization, to
each disconnected controller. Furthermore, we implement a
structured balanced truncation method [42] that maintains the
interconnection structure of systems by considering the plant
and controller dynamics.

In Fig. 8, we overplot the resultant relative approximation
error of the closed-loop system from each method, along with
plots of the relative error between the original and approximate
controllers in Fig. 9, where the H∞-error is calculated because
the balanced residualization possibly yields an approximate
model with a nonzero feedthrough term which brings on
the unbounded H2-norm. To make the comparison fair, we
give the dimensions of approximate controllers such that the
total number of controller dimensions coincides with that
resulting from our method. More specifically, we give the
controller dimension for the Krylov subspace method so that
each controller has an identical dimension up to the difference
of a residue modulo 5. For the balanced residualization, each
controller dimension is determined by the number of states
compatible with the least sum of the Hankel singular values for
all controllers. In a similar manner, we determine the controller
dimension for the structured balanced truncation method using
the structured Hankel singular values [42].

Inspecting the lines with diamonds in Figs. 8 and 9, we
see that the decreasing rate of closed-loop system approxima-
tion errors from the Krylov subspace method is lower, even
though its performance of lower-dimensional approximation
is better than that of the other methods. This trend results
from the fact that an appropriate dimension of controllers is
not systematically determined by the Krylov subspace method
in general. On the other hand, the balanced residualization,
denoted by the lines with circles, gives the best approximation
for disjoint controllers while being conducive to a precipitous
variation of approximation errors arising in the closed-loop
system. Note that the closed-loop stability is not guaranteed
theoretically. This result demonstrates that the behavior of the
closed-loop system is possibly affected by even a small error
in the controller approximation. Finally, inspecting the lines
with triangles in Figs. 8 and 9, we see that the decreasing
rate of closed-loop system approximation errors from the
structured balanced truncation is lower than ours while it
gives better controller and closed-loop system approximation
for higher-dimensional approximate controllers. Note that the
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breakup of the line in Fig. 8 indicates that the resultant closed-
loop systems are unstable. Indeed, unless there exist block-
diagonally structured gramians solving Lyapunov equations
or inequalities, closed-loop stability is not guaranteed in the
structured balanced truncation. From this numerical example,
we can affirm that our structured passive controller reduction
method is more reliable in preserving closed-loop stability,
i.e., passivity, with the dynamical behavior of the passive
controllers and controlled plant being explicitly considered.

V. CONCLUSION

In this paper, we propose a structured controller reduction
method for distributed control systems. As a fundamental tool
to develop structured controller reduction, we first established
dissipativity-preserving model reduction for general linear
systems on the basis of a singular perturbation approximation.
It was found that the singular perturbation approximation can
be represented by a projection-like formula that enables us
to characterize dissipativity preservation in a tractable manner
and to derive a novel factorization of error systems. This error
system factorization further provides a remarkable insight that
the resultant approximation error is related to the sum of
neglected eigenvalues of an index matrix.

Then, utilizing the dissipativity-preserving model reduction,
we developed a structured controller reduction method by
focusing on dissipative system interconnection. The major sig-
nificance is that it not only preserves the spatial distribution of
dissipative controllers but it also provides an a priori H2-error
bound for the structured controller reduction. The efficiency
of our method was demonstrated through a numerical example
of vibration suppression control for spatially distributed plants.
Via a comparison with some existing model/controller reduc-
tion methods, it was shown that our method can produce more
reliable approximate distributed controllers, whose dimension
is automatically determined by an eigenvalue analysis, while
considering the dynamical behavior of the set of original
controllers as well as a controlled plant.
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