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Abstract

This paper proposes a clustered model reduction method for semistable positive linear systems evolving over directed networks.
In this method, we construct a set of clusters, i.e., disjoint sets of state variables, based on a notion of cluster reducibility,
defined as the uncontrollability of local states. By aggregating the reducible clusters with aggregation coefficients associated
with the Frobenius eigenvector, we obtain an approximate model that preserves not only a network structure among clusters,
but also several fundamental properties, such as semistability, positivity, and steady state characteristics. Furthermore, it is
found that the cluster reducibility can be characterized for semistable systems based on a projected controllability Gramian
that leads to an a priori H2-error bound of the state discrepancy caused by aggregation. The efficiency of the proposed
method is demonstrated through an illustrative example of enzyme-catalyzed reaction systems described by a chemical master
equation. This captures the time evolution of chemical reaction systems in terms of a set of ordinary differential equations.
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1 Introduction

Many dynamical systems of interest to control commu-
nity are inherently constructed from subsystem intercon-
nections. Examples of such interconnected systems in-
clude power grids, transportation networks and so forth;
see [3] for an overview. Since the network structure of
such systems is often complex and large-scale, it is cru-
cial to develop an approximation method that enables us
to reduce their complexity (dimension). In addition, it is
more desirable to preserve some particular properties of
these systems, such as a network structure, stability, and
positivity, throughout the approximation. This kind of
structure-preserving model reduction has the potential
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to significantly simplify to analyse large-scale systems
while capturing their essential properties of interest.

A number of model reduction methods can be found in
the literature [1]. For instance, model reduction methods
inspired by principal component analysis, such as the
balanced truncation [4] and the Hankel norm approxi-
mation [15], are well known. A major advantage of these
methods is the availability of an error bound in terms of
theH∞-norm or Hankel norm. Furthermore, the class of
moment matching methods, including the Krylov sub-
space methods, is also well known [8]. This class of meth-
ods aims to suppress discrepancies in the system behav-
ior for specific input signals, and has the advantage of a
computationally efficient implementation. However, un-
like the former class of methods, a priori error bounds
have not yet been derived. For these existing model re-
duction, a systematic procedure is provided. However,
they have a drawback in terms of their application to net-
work system: the network structure of systems, i.e., the
interconnection topology among state variables or sub-
systems, is destroyed through the approximation. This is
because each state of the resultant approximants is con-
structed by a linear combination of all the original states.
Therefore, to practically approximate a network system,
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it is crucial to develop a model reduction method that
explicitly preserves the network structure of the system.

One approach to network structure-preserving model
reduction can be an extension of structure-preserving
model reduction methods found in the literature. For
example, [18] addresses a model reduction problem that
considers the preservation of the second-order structure.
However, this problem is not formulated on the premise
of network structure preservation. In contrast to the ex-
isting approach, a clustered model reduction method has
been developed for stable systems evolving over undi-
rected, or bidirectional networks [12]. In this method,
by focusing on the symmetry of system matrices, we
have introduced a system transformation, called positive
tridiagonalization, to characterize the cluster reducibil-
ity, defined as the uncontrollability of disjoint subsets, or
clusters, of state variables. The aggregation of reducible
clusters yields an approximate model that preserves the
network structure among clusters and the stability of
systems, and provides an error bound in terms of the
H∞-norm. However, the applicability of this clustered
model reduction is rather restricted because both sta-
bility preservation and reducibility characterization are
heavily reliant on the symmetry of the system matrices.
From a practical point of view, it is crucial to improve
the applicability of our clustered model reduction frame-
work.

One major difficulty confronted by network structure-
preserving model reduction involves preserving the sta-
bility of the original system in its approximants. To en-
able the systematic development of clustered model re-
duction, it is important to clarify the class of systems
to which it can reasonably be applied. In [5], it has
been found that stability analyses can be tractably per-
formed for a class of systems admitting a positive prop-
erty, called (internally) positive systems. More specifi-
cally, the stability of positive systems can be character-
ized by an eigenpair, called the Frobenius eigenvalue and
eigenvector. In fact, clustered model reduction has good
compatibility with the approximation of positive sys-
tems because, as long as we make the aggregation coef-
ficients non-negative, the positivity property of systems
can be preserved in its approximants. In this paper, we
use this compatibility to show that the semistability of
positive systems can be preserved by a selection of ag-
gregation coefficients specified by the Frobenius eigen-
vector. Moreover, we derive an alternative characteriza-
tion of cluster reducibility based on a projected control-
lability Gramian. Owing to this development, we can ap-
ply clustered model reduction to semistable positive sys-
tems, called positive directed networks, involving com-
partmental systems, and Markovian processes [5].

To demonstrate the improved applicability, we provide
an illustrative example of a chemical master equation
(CME) compatible with enzyme-catalyzed reaction
systems. It is known that CMEs belong to a class of

Markovian processes [9,16], which can be regarded as a
semistable positive directed network. Since the dimen-
sion of CMEs tends to be large, they are not necessar-
ily analytically or numerically tractable. To overcome
this difficulty, the proposed clustered model reduction
method produces an aggregated model that preserves
several fundamental properties as Markovian processes.
A preliminary version of this paper was published in
[11]. In comparison with it, this paper provides detailed
proofs and explanations for our theoretical results.

The remainder of this paper is structured as follows: In
Section 2, we first formulate a clustered model reduction
problem for positive directed networks. In Section 3, we
characterize the cluster reducibility using a projected
controllability Gramian, and develop a clustered model
reduction method. Section 4 demonstrates the efficiency
of the proposed method through an illustrative example
of CMEs. Finally, concluding remarks are provided in
Section 5.

Notation R: the set of real numbers, R>0 (R≥0) : the
set of positive (non-negative) real numbers, N: the set
of non-negative integers, In: the n-dimensional identity
matrix, |I|: the cardinality of a set I, im(M): the image
of a matrix M, ∥M∥F: the Frobenius norm of a matrix
M , diag(v): the diagonal matrix having a vector v on its
diagonal, Diag(M1, . . . ,Mn): the block diagonal matrix
having matrices M1, . . . ,Mn on its block diagonal.

For I ⊆ {1, . . . , n}, let enI ∈ Rn×|I| denote the matrix
composed of the column vectors of In compatible with
I. A square matrix M (respectively, a transfer matrix
G) is said to be semistable if all eigenvalues of M (poles
ofG) are in the closed left-half plane, and all eigenvalues
(poles) with zero real value are simple roots. A square
matrix M is said to be reducible if it can be placed into
block upper-triangular form by simultaneous row and
column permutations. Conversely, M is said to be ir-
reducible if it is not reducible. Furthermore, M is said
to be Metzler if the off-diagonal entries of M are all
non-negative. The positive (negative) semidefiniteness
of M = MT ∈ Rn×n is denoted by M ⪰ On (M ⪯ On).
Its positive (negative) definiteness is denoted similarly.
The H∞-norm of a stable proper transfer matrix G and
the H2-norm of a stable strictly proper transfer matrix
G are denoted by ∥G∥H∞ and ∥G∥H2 .

2 Problem Formulation

2.1 Preliminaries

In this paper, we deal with a class of positive linear sys-
tems evolving over directed networks. We denote a set
of irreducible Metzler matrices by

Mn := {M ∈ Rn×n : irreducible, Metzler}. (1)

In this notation, we define the following class of positive
systems:
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Fig. 1. Depiction of positive directed networks.

Definition 1 A linear system

Σ : ẋ = Ax+Bu (2)

is said to be a positive directed network if A ∈ Mn and
B ∈ Rn×m

≥0 .

This class of systems includes spatially-discrete
reaction-diffusion systems, electrical circuit networks,
continuous-time Markovian processes, and so forth.
Their state trajectory does not escape from the non-
negative orthant Rn

≥0 under non-negative input signals
and initial conditions. Such systems having the non-
negative property often appear in science and engineer-
ing [5]. With the notation of A = {ai,j} and B = {bi,j},
Fig. 1 depicts the interconnection topology (network
structure) of positive directed networks. Note that the
irreducibility of A ∈ Mn assumed in (1) coincides with
the strong connectivity of networks, which can be re-
laxed under a suitable situation; see Section 3.4 for
details.

In matrix theory, the dominant eigenvalue of a Metzler
matrix A ∈ Mn is called the Frobenius eigenvalue of A.
An eigenvalue λ of A is said to be dominant if it satis-
fies Reλ = max{Re λ̃ : λ̃ ∈ Λ(A)}, where Reλ denotes
the real part of λ, and Λ(A) denotes the spectrum of
A. In this paper, its Frobenius eigenvalue is denoted by
λF(A), and the associated left and right eigenvectors,
called the left and right Frobenius eigenvectors, are de-
noted by vL(A) ∈ R1×n and vR(A) ∈ Rn, respectively.
It is known that λF(A) is real and unique, and all en-
tries of vL(A) and vR(A) are non-negative; see Theorem
11 in [5]. Without loss of generality, we can assume that
the left and right Frobenius eigenvectors have the unit
norm, namely ∥vL(A)∥ = ∥vR(A)∥ = 1. In this nota-
tion, several properties of a semistable Metzler matrix
A ∈Mn are shown as follows:

Lemma 1 Let A ∈ Mn be given, and assume that it is
semistable. Then, it follows that

(i) λF(A) has an algebraic multiplicity equal to 1,
(ii) all entries of both vL(A) and vR(A), which are

uniquely determined, are positive, and
(iii) no eigenvalue of A is on the imaginary axis except

for the origin.

PROOF. Since A ∈ Mn is irreducible, the first and
second claims are assured by Theorem 17 in [5]. Let us

prove the third claim by contradiction. Suppose that
the claim does not hold, i.e., A has eigenvalues on the
imaginary axis away from the origin. Since λF(A) is the
unique largest real eigenvalue of A, the supposition re-
quires that λF(A) is on the positive real axis. However,
this requirement contradicts the assumption of semista-
bility. Hence, the third claim is verified. □

Lemma 1 ensures that, if λF(A) = 0, the correspond-
ing left and right eigenspaces are necessarily one-
dimensional owing to the uniqueness, and they are
spanned by vectors having positive entries. Based on
this fact, let us define a special class of matrices inMn as

M†
n := {M ∈Mn : vR(M) = vTL(M)},

which means that A ∈ M†
n has the same left and right

Frobenius eigenvectors up to their transpose. As shown
in the following lemma, anyA ∈Mn is diagonally similar
to a matrix in M†

n:

Lemma 2 For any A ∈Mn, D
− 1

2AD
1
2 ∈M†

n with

D :=
{
diag

(
vTL(A)

)}−1
diag(vR(A)). (3)

PROOF. From the second property shown in Lemma 1,
we see that all diagonal entries of D are positive.
Hence, all off-diagonal entries of D− 1

2AD
1
2 are non-

negative, i.e., D− 1
2AD

1
2 is Metzler. From direct cal-

culation, we can verify that both left and right
Frobenius eigenvectors of D− 1

2AD
1
2 coincide with

vF := {vR(A) ∗ vTL(A)}1/2 ∈ Rn
>0 up to its transpose,

where both the square root {·}1/2 and multiplication
∗ are performed in an entry-wise manner. Hence, the
claim follows. □

Lemma 2 shows that anyA ∈Mn is diagonally similar to
D− 1

2AD
1
2 ∈M†

n. Owing to D being diagonal, the trans-

formed system matrix D− 1
2AD

1
2 has the same network

structure (i.e., Boolean structure) as that of the original
system matrix A. Thus, without loss of generality, we
can assume that A ∈M†

n holds for any positive directed
network Σ. In the rest of this paper, let vF ∈ Rn

>0 de-
note the Frobenius eigenvector of A ∈ M†

n. One major
benefit of this coincidence of the left and right Frobenius
eigenvectors is that the semistability of A ∈ M†

n can be
proved by the quadratic Lyapunov function associated
with the identity matrix In, namely

A+AT ⪯ On, A ∈M†
n. (4)

This is proved by the fact that, for any semistable A ∈
M†

n, vF and vTF are the right and left Frobenius eigen-
vectors of A+AT ∈M†

n associated with λF(A+AT) =
2λF(A) ≤ 0. The negative semidefiniteness of A shown
in (4) has good compatibility with the semistability-
preserving model reduction based on orthogonal projec-
tion, as shown in the following lemma:
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Lemma 3 Let P ∈ RL×n be such that PPT = IL
with L ≤ n. If A ∈ M†

n is semistable, then PAPT is
also semistable. In particular, if A ∈ M†

n is stable, then
PAPT is stable.

PROOF. Since any principal submatrix of a negative
semidefinite matrix is also negative semidefinite, it fol-
lows from (4) that P (A + AT)PT ⪯ OL. Hence, the
semistability of PAPT is proved. The same argument
for a stable A ∈M†

n ensures the stability of PAPT. □

Lemma 3 guarantees that the semistability of A ∈ M†
n

is preserved in the projected matrix PAPT. Note
that PAPT is not necessarily semistable for a gen-
eral semistable matrix A. Furthermore, the condition
PPT = IL indicates that all column vectors of PT

are orthonormal. Thus, we see that the assumption of
A ∈ M†

n has good compatibility with model reduction
based on orthogonal projection preserving the semista-
bility of systems. However, note that PAPT is not
necessarily Metzler even if A ∈ M†

n. Moreover, if P is a
dense matrix, then so is PAPT. This implies that the
network structure of the original Σ is destroyed through
the orthogonal projection. Therefore, to preserve the
positivity as well as the network structure of Σ, we need
to impose a specific structure on P ∈ RL×n.

2.2 ClusteredModel Reduction Problem for Positive Di-
rected Networks

In this subsection, we formulate the problem of clustered
model reduction for positive directed networks. To this
end, we first introduce the following notion of network
clustering [12]:

Definition 2 Let L := {1, . . . , L}. The family of an in-
dex set {I[l]}l∈L is called a cluster set, each of whose el-
ements is referred to as a cluster, if each element I[l] is
a disjoint subset of {1, . . . , n} and satisfies

∪
l∈L I[l] =

{1, . . . , n}. Furthermore, an aggregation matrix compat-
ible with {I[l]}l∈L is defined by

P := Diag(p[1], . . . , p[L])Π ∈ RL×n (5)

where p[l] ∈ R1×|I[l]| such that ∥p[l]∥ = 1, and the per-

mutation matrix is defined as Π := [enI[1]
, . . . , enI[L]

]T for

enI[l]
∈ Rn×|I[l]|.

Based on Definition 2, we define the aggregated model
of Σ in (2) by

Σ̂P :

{
ξ̇ = PAPTξ + PBu

x̂ = PTξ.
(6)

Each state of Σ̂P , denoted by ξl ∈ R, is an approximant
of the clustered states given by x[l] := (enI[l]

)Tx ∈ R|I[l]|.

To see this more specifically, let us consider an example
in which I[l] = {1, 2, 3} and p[l] = [1, 1, 1]/

√
3. In this

case, as long as the approximation is good, i.e., the tra-
jectory of x̂ ∈ Rn is close to that of x ∈ Rn, it follows
that pT[l]ξl =: x̂[l] ≃ x[l], namely

1√
3
[1 1 1]

T
ξl(t) ≃ [x1(t) x2(t) x3(t)]

T,

where xi denotes the ith element of x. As shown in this
relation, the trajectory of each state of Σ̂P aims to trace
the trajectory of a kind of centroid compatible with the
clustered states of Σ. In the following, the aggregated
model Σ̂P in (6) is said to be positive if PAPT ∈ ML,

PB ∈ RL×m
≥0 , and PT ∈ Rn×L

≥0 . Then, we formulate the
following problem of clustered model reduction:

Problem Let a semistable positive directed network Σ
in (2) be given, and suppose that A ∈ M†

n. Given a
constant ϵ ≥ 0, find an aggregation matrix P in (5) such

that the aggregated model Σ̂P in (6) is semistable and
positive, and satisfies

∥g(s)− ĝ(s)∥H2
≤ ϵ, (7)

where the transfer matrices of Σ and Σ̂P are defined by

g(s) := (sIn−A)−1B, ĝ(s) := PT(sIL−PAPT)−1PB.

In model reduction based on the balanced realization
[4,15] as well as the positivity-preserving model reduc-
tion based on linear matrix inequalities [14], each state of
the reduced model is usually obtained as a linear combi-
nation of all states of the original system, i.e., the trans-
formation matrix is a dense matrix. This clearly con-
trasts with our problem formulation, because P in (5)
is structured as the product of a block-diagonal matrix
and a permutation matrix.

3 Clustered Model Reduction Theory

3.1 Exact Clustered Model Reduction

In the rest of this paper, unless otherwise stated, we as-
sume that g in (7) is semistable but not stable, or equiv-
alently, λF(A) = 0 and vTFB ̸= 0. Similar results can
be straightforwardly obtained for stable systems. Note
that, if λF(A) = 0, guaranteeing the stability of error
systems is more challenging than the model reduction
of stable systems. This is because the semistability of ĝ,
which can be guaranteed by Lemma 3, does not imply
the stability of g−ĝ in (7). Note that we can parametrize
P in (5) by an aggregation coefficient vector p ∈ Rn and
a cluster set {I[l]}l∈L via

p[l] = ∥(enI[l]
)Tp∥−1{(enI[l]

)Tp}T, l ∈ L. (8)
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In the following, for simplicity, we do not care about the
scale of p because any multiple of p yields the same P for
a fixed {I[l]}l∈L. Then, we obtain the following result to
prove the stability of error systems:

Lemma 4 Let a semistable positive directed network Σ
in (2) be given, and suppose that A ∈ M†

n. Consider an
aggregation matrix P in (5) with the parameterization
of (8), and define g and ĝ as in (7). Then, the error
system g − ĝ is stable for any {I[l]}l∈L if and only if
p = vF ∈ Rn

>0.

PROOF. As shown in the proof of Theorem 4 in [12],
the error system can be in the cascaded form of

g(s)− ĝ(s) = Ξ(s)P
T
Pg(s), (9)

where Ξ(s) := PT(sIL−PAPT)−1PA+In. To prove the
sufficiency, we first show that both Ξ and Pg are stable
for any {I[l]}l∈L if p = vF. Note that

vF ∈ im(PT) (10)

follows for any {I[l]}l∈L. Noting that PTP is the or-

thogonal projection matrix onto im(PT), we see that
PTPvF = vF, or equivalently, PvF = 0. This implies
that the eigenspace of (A,P ) associated with λF(A) = 0
is unobservable. Hence, all poles of Pg are in the open
left-half plane. Next, we prove the stability of Ξ, whose
semistability is ensured by Lemma 3. From (10), it fol-
lows that (PvF)

T is the left Frobenius eigenvector of
PAPT. Thus, we have (PvF)

TPA = vTFA = 0, which im-
plies that the left eigenspace of (PAPT, PA) associated
with λF(PAPT) = 0 is uncontrollable. Hence, all poles
of Ξ are also in the open left-half plane.

Next, we prove the necessity by contraposition. Let us
consider the case where all states merge into a single
cluster, i.e., I[1] = {1, . . . , n}. If p ̸= vF, we can see that

(10) does not hold becausePT = p. Thus, we havePvF ̸=
0, which implies that Pg has a pole on the origin. On the
other hand, it follows from the negative semidefiniteness
of A shown in (4) that PAPT = pTAp < 0, whose strict
inequality comes from p ̸= vF. This implies that Ξ in
(9), which is a first order transfer matrix, is stable and
its zeros are not on the origin. Hence, the error system
in (9) is not stable. □

Lemma 4 shows that the selection of p = vF is necessary
and sufficient to guarantee the stability of error systems
for any {I[l]}l∈L. This is ensured by the fact that the
eigenspace of Σ associated with λF(A) = 0 is exactly

preserved in that of Σ̂P . Note that vF corresponds to
the steady state of Σ, namely, when u = 0, it follows
that limt→∞ x(t) = vF, where we drop the normalization
of vF. This means that, if we consider an example in
which the original Σ has consensus-type dynamics with

a symmetric A, the consensus property can be preserved
in the aggregated model Σ̂P . Thus, we can see that this
selection of p reflects the magnitude of the state behavior
in a steady state.

Next, we introduce the notion of cluster reducibility,
which is defined as a kind of uncontrollability of local
states. Let us consider the transfer function from the in-
put u to the ith state xi, denoted by gi. In this notation,
gi = gj for i ̸= j implies that the ith and jth states have
exactly the same behavior for all input signals. Thus,
these states would be aggregated into a scalar state un-
der the identical aggregation coefficients. However, note
that, as shown in Lemma 4, the aggregation coefficients
should comply with the corresponding elements of vF to
guarantee the stability of error systems. Therefore, only
if vjgi = vigj , or equivalently, if there exists some g⋆

such that [
gi(s)

gj(s)

]
=

[
vi

vj

]
g⋆(s),

where vi denotes the ith element of vF, we perform the
aggregation of xi and xj while guaranteeing the stability
of error systems. Based on this observation, we define
the following cluster reducibility:

Definition 3 Let a semistable positive directed net-
work Σ in (2) be given, and define g as in (7). A cluster
I[l] is said to be reducible if there exists a row vector g⋆[l]
of rational functions such that

(enI[l]
)Tg(s) = pT[l]g

⋆
[l](s), (11)

where p[l] is defined as in (8) with p = vF ∈ Rn
>0.

Let us consider the characterization of this cluster re-
ducibility in an algebraic manner. For linear systems,
the controllability Gramian is often used to analyze the
controllability of stable systems. However, note that
the usual controllability Gramian cannot be defined for
semistable positive directed networks because they are
not stable. Therefore, we consider using a projected
controllability Gramian as follows:

Theorem 1 Let a semistable positive directed network
Σ in (2) be given, and suppose that A ∈ M†

n. Let V ∈
Rn×(n−1) be such that [vF, V ] ∈ Rn×n is unitary, and

define Φ̂ = Φ̂T ⪰ On−1 such that

V
T
AV Φ̂ + Φ̂V

T
ATV + V

T
BBTV = 0. (12)

Furthermore, for Φ := V Φ̂V
T ⪰ On, let Φ 1

2
denote a

Cholesky factor satisfying Φ = Φ 1
2
ΦT

1
2

. Then, a cluster

I[l] is reducible if and only if there exists a row vector

ϕ⋆
[l] ∈ R1×n such that

(enI[l]
)TΦ 1

2
= pT[l]ϕ

⋆
[l], (13)
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where p[l] is defined as in (8) with p = vF ∈ Rn
>0. In

addition, if all clusters are reducible, then the aggregated
model Σ̂P in (6) is semistable and positive, and satisfies
g = ĝ, where g and ĝ are defined as in (7).

PROOF. Note that (11) holds if and only if there exists

p[l] ∈ R(|I[l]|−1)×|I[l]| such that [pT[l], p
T
[l]]

T is unitary and

p[l](e
n
I[l]

)Tg(s) = 0. (14)

Similarly, (13) is equivalent to the existence of p[l] such
that

p[l](e
n
I[l]

)TΦ 1
2
= 0. (15)

Therefore, in the following, we prove the equivalence be-
tween (14) and (15). Note that

p[l](e
n
I[l]

)TvF = p[l](e
n
I[l]

)TPTPvF = 0 (16)

follows from (10) with p = vF. Thus, the unitary trans-
formation of the left-hand side of (14) by [vF, V ] leads
to the equality of

p[l](e
n
I[l]

)Tg(s) = p[l](e
n
I[l]

)TV (sIn−1 − V
T
AV )−1V

T
B.

Since Φ̂ is the controllability Gramian associated with

(V
T
AV , V

T
B), we have

∥p[l](enI[l]
)Tg(s)∥H2

= ∥p[l](enI[l]
)TΦ 1

2
∥F. (17)

Hence, (14) is equivalent to (15). Clearly, g = ĝ is en-
sured by the fact that the reducibility of all clusters
with (8) implies that Pg = 0 in (9). Finally, we have

PAPT ∈ M†
L and PB ∈ RL×m

≥0 from the positivity of

all p[l] with the fact that PvF and (PvF)
T are the right

and left Frobenius eigenvectors of PAPT, respectively.
Hence, Σ̂P is semistable and positive. □

Theorem 1 shows that the cluster reducibility can be
characterized by linear dependence among the corre-
sponding row vectors of Φ 1

2
. Note that Φ contains in-

formation on the degree of controllability with respect
to the stable subspace of Σ. More specifically, it reflects
the magnitude of the state behavior when we apply in-
put signals that do not excite the eigenspace associated
with λF(A) = 0. As shown in this theorem, the aggre-
gation of any reducible cluster causes no approximation
error. Even though such an exact aggregation is indeed
desirable, the reduction of system dimensions should be
restrictive.

3.2 Clustered Model Reduction in Terms of the H2-
Norm

To perform an approximation error analysis in terms
of the H2-norm, we define a relaxed notion of cluster
reducibility as follows:

Definition 4 Let a semistable positive directed net-
work Σ in (2) be given. Under the same notation as that
in Theorem 1, a cluster I[l] is said to be θ-reducible if

there exists ϕ⋆
[l] ∈ R1×n such that

∥∥∥(enI[l]
)TΦ 1

2
− pT[l]ϕ

⋆
[l]

∥∥∥
F
≤

√
|I[l]|θ, θ ≥ 0. (18)

In Definition 4, the constant θ represents a quantitative
index of cluster reducibility, where the scaling by

√
|I[l]|

is introduced for technical reasons. Clearly, the relaxed
condition in (18) includes the exact condition in (13),
and they are equivalent if θ = 0. This inclusion implies
that, in the construction of clusters, we find a set of states
that behave similarly for all input signals. Intuitively,
giving a small θ, we can expect to obtain Σ̂P that is a
good approximant of the original Σ. Then, we can obtain
the following result:

Theorem 2 Let a semistable positive directed network
Σ in (2) be given, and suppose that A ∈M†

n. Under the
same notation as that in Theorem 1, let γ > 0 be such
that

V
T
AV + V

T
ATV + γ−1(V

T
AATV + In−1) ≺ On−1.

(19)
If all clusters are θ-reducible, then the aggregated model
Σ̂P in (6) is semistable and positive, and satisfies

∥g(s)− ĝ(s)∥H2 ≤ γ

√∑L
l=1|I[l]|(|I[l]| − 1) θ. (20)

PROOF. By (9), ∥g−ĝ∥H2 ≤ ∥Ξ∥H∞∥P
T
Pg∥H2 holds,

where both Ξ and Pg are stable as shown in the proof
of Lemma 4. Since the Riccati inequality

PATPTX +XPAPT +
1

µ
(XPAATPTX + IL) ≺ OL

associated with Ξ is identical to that associated with

Ξ̂(s) := (sIL − PAPT)−1PA,

we verify the equality of ∥Ξ∥H∞ = ∥Ξ̂∥H∞ . Thus, in the

following, we analyze ∥Ξ̂∥H∞ . For Ṽ ∈ RL×(L−1) such

that [PvF, Ṽ ] is unitary, we can rewrite Ξ̂ as

Ξ̂(s) = Ṽ (sIL−1 − Ṽ TPAPTṼ )−1Ṽ TPA,

where Ṽ TPAPTṼ is stable. Based on this representa-
tion, let us prove that ∥Ξ̂∥H∞ < γ by virtue of (19). To
this end, we first prove that there exists some γ > 0 such
that (19) holds. From A ∈M†

n, it follows that

A+AT ∈M†
n, λF(A+AT) = 0, (A+AT)vF = 0.
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Thus, X := V
T
AV + V

T
ATV is negative definite. Note

that X ⪯ −λ1In−1 holds for λ1 denoting the minimal
eigenvalue of−X. Similarly, for λ2 denoting themaximal

eigenvalue of the positive definite Y := V
T
AATV +In−1,

we have Y ⪯ λ2In−1. Therefore, the left-hand side of
(19) satisfies

X + γ−1Y ⪯ (−λ1 + γ−1λ2)In−1.

Hence, (19) is satisfied for any γ > λ2/λ1. Multiplying

(19) by Ṽ TPV and (Ṽ TPV )T from the left and right,
respectively, we have

Ṽ TPAPTṼ + Ṽ TPATPTṼ

+γ−1(Ṽ TPAATPTṼ + IL−1) ≺ OL−1,
(21)

where we have used V V
T
A = AV V

T
= A and

Ṽ TPV V
T
PTṼ = Ṽ TP (In − vFv

T
F)P

TṼ = IL−1.

Thus, the bounded real lemma ensures ∥Ξ̂∥H∞ < γ by

(21). Next, we evaluate ∥PT
Pg∥H2 . From (17), it follows

that ∥PT
Pg∥H2

= ∥PΦ 1
2
∥F, where P can be formed

by replacing each p[l] in (5) with p[l]. Since [pT[l], p
T
[l]]

T is

unitary, we have

p[l](e
n
I[l]

)TΦ 1
2
= p[l]∆[l], ∆[l] := (enI[l]

)TΦ 1
2
− pT[l]ϕ

⋆
[l],

where p[l] is allowed to be empty if |I[l]| = 1. The θ-

reducibility in Definition 4 implies ∥∆[l]∥F ≤
√
|I[l]| θ.

Thus, we have

∥PΦ 1
2
∥2F ≤

L∑
l=1

∥p[l]∥2F∥∆[l]∥2F ≤
L∑

l=1

|I[l]|(|I[l]| − 1)θ2,

where we have used ∥p[l]∥2F = tr(p[l]p
T
[l]) = |I[l]| − 1.

Hence, (20) follows. Finally, the positivity of Σ̂P follows
from the positivity of all p[l]. □

Theorem 2 shows that there is a linear dependence be-
tween θ and the approximation error. Thus, we can use
θ as a design parameter to regulate the approximation
quality of resultant aggregated models. Note that the
clustered model reduction method can generally pro-
vide better approximation than a positivity-preserving
model reduction method performed by the simple trun-
cation of state variables having a small influence on the
input-to-output mapping [17]. This is because the clus-
tered model reduction can aggregate the states not only
having small behavior but also having similar behavior
for input signals.

In model reduction theory, it is known that guarantee-
ing semistability preservation and performing an error

analysis are generally challenging problems, especially in
structure-preserving model reduction [19]. Our success
stems from the clarification that

• there exists a diagonal similarity transformation to
make aMetzler matrix negative semidefinite, as shown
in Lemma 2,
• the stability of error systems can be guaranteed by giv-
ing aggregation coefficients associated with the Frobe-
nius eigenvector, as shown in Lemma 4, and
• each row vector in the Cholesky factor of a pro-
jected controllability Gramian, compatible with the
H2-analysis, algebraically captures the characteris-
tics of state behavior for input signals, as shown in
Theorems 1 and 2.

3.3 Systematic Implementation

In this subsection, we propose an algorithm for solving
the clustered model reduction problem in Section 2.2
with a prescribed value of ϵ. To this end, we first provide
a procedure to construct a set of θ-reducible clusters, on
the premise that θ ≥ 0 is given and Φ 1

2
is obtained. As-

sume that a set of clusters {I[1], . . . , I[l−1]} has already
been formed, and let J := {1, . . . , n}\

∪l−1
k=1 I[k] denote

the set of state indices that do not belong to any clus-
ter. When we make a new cluster I[l], we first choose an
index j ∈ J , and then look for indices i ∈ J satisfying∥∥ϕi − viv

−1
j ϕj

∥∥ ≤ θ, (22)

where ϕi ∈ R1×n denotes the ith row vector of Φ 1
2
and

vi ∈ R denotes the ith entry of vF. Note that ∥M∥2F =∑m
i=1 ∥Mi∥2 holds, where Mi ∈ R1×n denotes the ith

row vector of M ∈ Rm×n. Thus, if (22) holds for all
i ∈ I[l] ⊆ J , then∥∥∥(enI[l]

)TΦ 1
2
−pT[l]ϕj

∥∥∥2
F
=
∑
i∈I[l]

∥ϕi − viv
−1
j ϕj∥2 ≤ |I[l]|θ2.

Hence, we see that the new cluster I[l] is θ-reducible.
On the basis of this, an algorithm producing a set of θ-
reducible clusters is provided as follows:

(i) Initialize temporal variables as l = 0 and L = ∅.
(ii) Repeat (iii)–(v) while

∪
k∈L I[k] ̸= {1, . . . , n}.

(iii) Update the variables as l← l + 1 and L← {L, l}.
(iv) Choose i ∈ {1, . . . , n}\

∪
k∈L I[k] and set I[l] = {i}.

(v) For all j ∈ {1, . . . , n}\
∪

k∈L I[k], if (22) holds for i
and j, then I[l] ← {I[l], j}.

It should be noted that this algorithm does not nec-
essarily produce a unique cluster set, namely a degree
of freedom remains in the cluster construction. The ex-
plicit consideration on this remaining freedom would be
a meaningful future work to pursue.

From the alternative expression in (22), we see that,
when ∥v−1

j ϕj∥ ≫ θ and ∥v−1
j ϕj∥ ≫ ∥v−1

i ϕi∥, the cluster
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to which the jth state belongs should not merge with
the ith state. From this observation, we can see that
the magnitude of ∥v−1

j ϕj∥ can be regarded as a kind of
uniqueness of the corresponding state variable. Note that
vj corresponds to the magnitude of the state behavior in
a steady state, and ϕj contains information on the degree
of controllability with respect to the stable subspace.
Thus, we see a tendency for a state variable not to be
clustered if its controllability is relatively large while its
steady state value is small.

Some discussion on the conservativeness of the error
bound is in order. Indeed, even though Theorem 2 pro-
vides a theoretically reasonable strategy to find {I[l]}l∈L,
the error bound in (20) may become conservative, espe-
cially in a large-scale setting. This is because no informa-
tion on P and P is taken into account to derive the up-
per bound of γ in (19). To compensate for this weakness,
we propose an efficient method to calculate the approx-
imation error by utilizing the cascaded form of the error
system in (9). Let V ∈ Rn×(n−1) and Ṽ ∈ RL×(L−1) be

such that [vF, V ] and [PvF, Ṽ ] are unitary, respectively.
Then, it follows that

P
T
Pg(s) = P

T
P V (sIn−1 − V

T
AV )−1V

T
B

Ξ(s) = PTṼ (sIL−1 − Ṽ TPAPTṼ )−1Ṽ TPA+ In.

Thus, the error system can be represented as

g(s)− ĝ(s) = C(sIn+L−2 −A)−1B, (23)

where

A =

[
A11 A12

0 A22

]
, B =

[
0

V
T
B

]
, C =

[
PTṼ P

T
P V

]

with A11 := Ṽ TPAPTṼ , A12 := Ṽ TPAP
T
P V , and

A22 :=V
T
AV . For a fixed P in (5), let X ⪰ OL−1 and

Y ∈ R(L−1)×(n−1) be solutions of the following Lya-
punov and Sylvester equations:

A11X + XAT
11 +A12YT + YAT

12 = 0,

A11Y + YAT
22 +A12Φ̂ = 0,

(24)

where Φ̂ is the solution of (12). Since the controllability
Gramian for the realization of the error system in (23)
is given by

W :=

[
X Y
YT Φ̂

]
,

the approximation error in terms of the H2-norm is cal-
culated with

∥g(s)− ĝ(s)∥H2 =

√
tr(X ) + tr(PΦP

T
), (25)

where we have used

tr(PTṼ X Ṽ TP ) = tr(Ṽ TPPTṼ X ) = tr(X ),
tr(P

T
PV Φ̂V

T
P

T
P ) = tr(PP

T
PΦP

T
) = tr(PΦP

T
)

with PPT = IL, Ṽ TṼ = IL−1 and PP
T
= In−L. Note

that Φ̂ in (24) is obtained in advance to find P because
it is used to find Φ. Furthermore, since we only need to
find the lower-dimensional solutions X and Y individu-
ally, the equations in (24) can be solved more efficiently
than the Lyapunov equation with respect to the simple
(n+L)-dimensional error system. Using this a posteriori
error calculation, the following algorithm can be used to
solve the clustered model reduction problem:

(a) Prescribe the admissible error ϵ ≥ 0.
(b) Find Φ and calculate its Cholesky factor Φ 1

2
∈

Rn×n.
(c) For a fixed θ ≥ 0, construct a set of θ-reducible
clusters {I[l]}l∈L.

(d) Find X ∈ R(L−1)×(L−1) by solving the Lyapunov
and Sylvester equations in (24).

(e) Calculate the resultant approximation error by (25).
(f) If the approximation error is not less than ϵ, then
return to (c) after setting a smaller θ ≥ 0.

We give a note on the computational effort required to
compute solutions to the Lyapunov and Sylvester equa-
tions. Even though their computation may become time
consuming in a large-scale setting, a number of effective
methods for solving large-scale Lyapunov and Sylvester
equations can be found in the literature. One widely
used approach is an iterative calculation based onKrylov
subspace methods. For example, [7,10] develop approx-
imate solution algorithms by explicitly considering the
low-rank nature of system matrices. Furthermore, we
give an additional note on the initial choice of θ. We
notice from (22) that its order of magnitude needs to
be comparable with that of ∥ϕi∥ in the construction of
a reasonable cluster set. This can be confirmed by the
fact that, if ∥ϕi∥ ≪ θ for all i ∈ {1, . . . , n}, then all
states should merge into a single cluster. Finally, note
that the posteriori error calculation in Steps (d)–(e) can
be skipped when we are interested in the dimension of
approximants. Such an approximation is effective when
only limited memory storage is available.

3.4 Generalization to Reducible Systems

In this subsection, we consider relaxing the irreducibil-
ity condition of A ∈ M†

n assumed in Definition 1. Note
that, for a reducible matrix A, we cannot apply the di-
agonal similarity transformation shown in Lemma 2, be-
cause its left and right Frobenius eigenvectors may have
zero entries. This spoils the property in (10) that can be
rephrased as

im(W ) ⊆ im(PT), W :=
[
vTL(A) vR(A)

]
. (26)
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This relation is fundamental to the above arguments
used to prove the stability of error systems. Conversely,
if (26) is satisfied, the assumption of irreducibility is not
required to prove the stability of error systems.

Without loss of generality, we can assume that a re-
ducible matrix A is structured as

A =


A1,1 0 · · · 0

A2,1 A2,2
. . .

...
...

...
. . . 0

AK,1 AK,2 · · · AK,K

 ∈ Rn×n, n =
K∑

k=1

nk,

where the diagonal blocks Ak,k ∈ Mnk
are irreducible

for all k ∈ {1, . . . ,K}. In addition, we assume that

• AK,K ∈M†
nK

, without loss of generality
• λF(A) = 0 is simple
• all entries of the left eigenvector associated with λF(A)

are positive, i.e., vL(A) ∈ R1×n
>0 .

Even though the second and third assumptions are not
necessarily trivial for a reducible matrix A, we shall see
in Section 4 that they are indeed satisfied by a CME de-
rived from enzyme-catalyzed reaction systems. Then, it
is readily verified that λF(A) = λF(AK,K) = 0. In ad-
dition, since AK,K ∈ M†

nK
, the left and right Frobenius

eigenvectors can be described as vL(A) = [w vL(AK,K)]

and vR(A) =
[
0 vTL(AK,K)

]T
where w ∈ R1×(n−nK)

>0 de-
notes a positive row vector. To guarantee the inclusion in
(26), we construct a set of θ-reducible clusters by impos-
ing the following additional constraint: Let Nk denote
an index set corresponding to the kth block ofA, namely
Ak,k = (enNk

)TAenNk
for k ∈ {1, . . . ,K}. In this notation,

we consider forming clusters inside N1:K−1 :=
∪K−1

i=1 Ni

and NK separately. More specifically, we form {I[l]}l∈L
while imposing the additional constraint

l0∪
l=1

I[l] = N1:K−1,

L∪
l=l0+1

I[l] = NK (27)

with some l0 ∈ L. By giving each p[l] in (8) with p =

vTL(A), it turns out that the resultant aggregation matrix
satisfies (26). This is verified by the fact that P is to
be structured as P = Diag(P1:K−1, PK) ∈ RL×n where
P1:K−1 ∈ Rl0×(n−nK), and PK ∈ R(L−l0)×nK satisfies

vL(AK,K)PT
KPK = vL(AK,K).

Hence, the stability of error systems is guaranteed by the
aggregationmatrixP associated with {I[l]}l∈L satisfying
(27).

Moreover, we can derive an H2-error bound similar to
that in Theorem 2, if all clusters are θ-reducible. In this

case, though it is difficult to analytically show an a priori
bound of ∥Ξ∥H∞ , we instead obtain

∥g(s)− ĝ(s)∥H2 ≤ ∥Ξ(s)∥H∞

√∑L
l=1|I[l]|(|I[l]| − 1) θ,

where Ξ is defined as in (9). This expression implies that,
even for Σ with a reducible matrix A, the parameter θ
can be used as a design criterion to regulate the approx-
imation quality of the resultant Σ̂P .

3.5 On the Applicability of Proposed Clustered Model
Reduction

For the clustered model reduction method developed in
Sections 3.1–3.4, the existence of the diagonal similarity
transformation in Lemma 2 is a key factor in guarantee-
ing the semistability of the resultant aggregated models.
The existence of such a diagonal similarity transforma-
tion is closely related to the existence of diagonal Lya-
punov functions. This can be explained as follows: Let
A ∈ Rn×n be such that

ATV + V A ⪯ On (28)

for some V = V T ≻ On, which is used to prove the
semistability of A. Let us consider the Cholesky factor
V 1

2
such that V = V 1

2
V T

1
2

. Multiplying (28) by V −1
1
2

and

V −T
1
2

from the left and right, respectively, it follows that

ÃT + Ã ⪯ On, Ã := V T
1
2
AV −T

1
2

. (29)

Thus, any A satisfying (28) is similar to the negative

semidefinite matrix Ã. In these specific system coordi-
nates, we can always perform projection-based model
reduction that preserves the semistability, as long as we
use orthogonal projection. However, the transformation
in (29) is generally unworkable in clustered model reduc-
tion. This is because the network structure of the origi-
nal A is destroyed through the transformation, since V 1

2

generally turns out to be a dense matrix.

In view of this, we can see that the existence of diagonal
Lyapunov functions is key to theoretically guaranteeing
the semistability preservation in clustered model reduc-
tion. One particular class of systems that admit diagonal
Lyapunov functions is those with a symmetric system
matrix. For this class of systems, we have developed [12]
a clustered model reduction method, in which an error
bound in terms of the H∞-norm is guaranteed and the
symmetry of the system matrix is preserved on the ba-
sis of orthogonal projection. In this paper, we enhance
the applicability of our clustered model reduction by us-
ing the fact that any positive directed network admits
a diagonal Lyapunov function, and cluster reducibility
can be characterized for semistable systems based on
a projected controllability Gramian. Furthermore, we
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have clarified that a specific condition on the aggregation
matrices, like (26), is crucial in guaranteeing the stabil-
ity of error systems. Note that several characterizations
of systems admitting diagonal Lyapunov functions can
be found in the literature [2,13]. In particular, [13] de-
velops an effective method to determine their existence
through a feasibility test for a linear programming prob-
lem. Based on these characterizations, one can address
a clustered model reduction problem for a broader class
of systems.

4 Illustrative Example

4.1 Chemical Master Equation

In this section, we consider the following chemical re-
action system composed of four different molecules, de-
noted by Si for i ∈ {1, . . . , 4}:

S1 + S2

c1
⇄
c2

S3, S3
c3→S4 + S2, (30)

where ci ≥ 0 denote the reaction rate constants. This
class of a chemical reaction system is known as the mech-
anism of enzyme-catalyzed reactions [9]. Let us consider
the case in which the initial number of molecules of both
S1 and S2 is N0. In this case, all realizable distribu-
tions of the number of molecules are enumerated by the
n = n(N0) := (N2

0 + 3N0 + 2)/2 kinds of vectors
N0

N0

0

0

 ,


N0 − 1

N0 − 1

1

0

 ,


N0 − 2

N0 − 2

2

0

 , . . . ,


0

N0

0

N0

 ∈ N4,

where the ith entry denotes the number of molecules of
Si for i ∈ {1, . . . , 4}. We denote each realizable distribu-
tion by ξ(i) ∈ N4 for i ∈ {1, . . . , n}, and the realization
probability of ξ(i) at time t by xi(t) ∈ [0, 1]. In this nota-
tion, the time evolution of (30) is captured by the CME

ẋ = Ax, x(0) = en1 , (31)

where x := [x1, . . . , xn]
T ∈ [0, 1]n and A ∈ Rn×n

is semistable and Metzler; see [9] for the derivation.
Note that the initial condition x(0) represents the
situation where the realization probability x1(t) of
ξ(1) := [N0, N0, 0, 0]

T is equal to 1 at t = 0. Further-
more, it follows that

∑n
i=1 xi(t) = 1 for all t ≥ 0 be-

cause each xi represents the realization probability of
distribution ξ(i). Accordingly, A in (31) satisfies

λF(A) = 0,

 vL(A) = [1, . . . , 1],

vR(A) = lim
t→∞

x(t) = enn,
(32)

Fig. 2. Transition diagram of molecule number distributions.

where we drop the normalization of the Frobenius
eigenvectors. In Fig. 2, where the distributions are
enumerated as ξ(1) = [N0, N0, 0, 0]

T, . . . , ξ(n(N0)) =
[0, N0, 0, N0]

T, we show the transition diagram of (30) in
the CME expression. The horizontal transitions corre-
spond to the first and second reactions, and the vertical
transitions correspond to the third reaction in (30).
Since the initial number of molecules is generally given
as a value of the order of a few dozen or hundred, the
dimension of (31) turns out to be somewhat large. Thus,
even though the CME can capture the behavior of the
chemical reaction in terms of a set of linear ordinary
differential equation, it is not necessarily analytically
or numerically tractable [9,16]. Therefore, to enable
practical analyses, it is desirable to derive a mesoscopic
model that approximates the essential properties of the
microscopic expression in (31).

4.2 Clustered Model Reduction of the Chemical Master
Equation

In this subsection, based on the fact that (sIn−A)−1x(0)
is equal to the Laplace transform of eAtx(0), we ap-
proximate the CME in (31) described by Σ in (2) with
B = x(0). We apply the algorithm proposed in Sec-
tion 3.3 to construct an aggregated model that satisfies
a prescribed error precision. Let us prescribe the admis-
sible error as ϵ = 7.6 × 10−3. Against each value of θ,
Fig. 3–(a) plots the resultant dimension of the aggre-
gated model. Furthermore, in Fig. 3–(b), we plot the re-
sultant approximation error, which is the value given by
(25). These figures show that the dimension of the ag-
gregated model increases, and the approximation error
appropriately decreases, as θ decreases. This result con-
firms that the value of θ successfully captures the approx-
imation quality of the aggregated models. By decreasing
the value of θ according to Steps (c)–(f), we find that,
when θ = 7.99 × 10−6, the original 3321-dimensional
CME is reduced to a 684-dimensional version, and the
resultant approximation error is 6.2 × 10−3, which is
less than the prescribed ϵ. Fig. 3–(c) shows the trajec-
tory of the original system x ∈ Rn (solid lines, 3321-
dimensional) and that of the aggregated model x̂ ∈ Rn

(dashed lines, 684-dimensional). We can see from this
figure that the behavior of the CME in (31) is well ap-
proximated by that of the aggregated model.
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Fig. 3. (a) Dimension and (b) approximation error of aggregated models versus values of θ, (c) state trajectory of original
system and aggregated model.

From the result above, we can conclude that the pro-
posed clustered model reduction method works well even
for reducible CMEs. In addition, the aggregated model
not only approximates the behavior of (31), but also pre-
serves particular properties of the CME. More specifi-
cally, the aggregated model has the following properties:

• the positivity of systems (the non-negativity of the
state trajectory) is preserved,

• the sum of all states is equal to 1 for any t ≥ 0,
• the steady state distribution is exactly preserved, and
• each state of the aggregated model tracks a centroid

of a set of the original states,

where the second and third items are guaranteed by (26).

5 Concluding Remarks

In this paper, we have developed a clustered model
reduction method for semistable positive systems evolv-
ing over directed networks, called positive directed
networks. In comparison with our previous work [12],
the applicability of clustered model reduction has been
improved by the developments reported in this paper.
This success stems from the clarification that the exis-
tence of diagonal Lyapunov functions is key to guaran-
teeing the semistability preservation in clustered model
reduction, and cluster reducibility, defined as the un-
controllability of local states, can be characterized for
semistable systems based on a projected controllabil-
ity Gramian. The efficiency of the proposed method
has been demonstrated through an illustrative example
using CMEs, which are a type of Markovian process.
The proposed method can systematically construct a
mesoscopic model of CMEs that well approximates the
behavior of the original system while preserving partic-
ular properties of the Markovian processes.

As for the optimality of approximation, although a nec-
essary condition for the H2-optimality is derived for ap-
proximate models with a set of a priori fixed poles [6], an
adequate solution to the optimal approximation prob-
lem has not yet been given even in unstructured model
reduction. In view of this, it would be natural to say that

the optimal approximation is harder to pursue in the
clustered model reduction, where a non-negative sparse
structure is imposed on aggregation matrices. This im-
plies that structure-preserving model reduction is gener-
ally difficult to develop without the sacrifice of approxi-
mation accuracy.
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