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Abstract— This paper proposes a singular perturbation ap-
proximation for semistable linear systems. In particular, we
derive a novel expression of error systems in the Laplace
domain. As a result, we obtain an H2-error bound in terms of
the sum of eigenvalues of an index matrix, which coincides with
a controllability gramian of the state-derivative. Furthermore,
we show that the singular perturbation model appropriately
preserves the semistability of the original system and also
guarantees the stability of the error system. The efficiency of
the proposed method is shown through a numerical example of
a Markov chain model approximation.

I. INTRODUCTION

Along with recent technical development, the architecture
of systems covered by the control community has tended to
become more complex and larger in scale. For example, in
weather prediction simulations, the system dimension possi-
bly reaches hundreds of thousands. Therefore, it is crucial
to develop model approximation methods to reduce system
complexity. As one of possible approaches, model reduction
methods have been extensively developed in literature, and
they have been used as an efficient tool for analyzing and/or
synthesizing large-scale systems; see [1], [2] for an overview.

For various purposes, a number of model reduction frame-
works have been proposed in past decades. For instance,
model reduction methods based on a notion of the principal
component analysis, which includes the balanced truncation
[3], [4] and the Hankel norm approximation [5], are well
known. A major advantage of this kinds of methods is that
an error bound is available in terms of, e.g., the H∞-,
or Hankel norm. Furthermore, moment matching methods,
which include the Krylov projection methods, are also well
known [6], [7]. This kind of methods aims to suppress
the discrepancy of the response for specific input signals,
and has an advantage that they can be implemented in
a computationally efficient manner. However, unlike the
aforementioned methods, no error bound is available, except
an optimal H2-reduction procedure has been developed in
the past few years [8].
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In addition to the two kinds of methods above, singular
perturbation-based approximation has been developed as
one of frameworks to reduce the complexity of dynamical
systems. Actually, it is known that this method preserves
certain important properties such as stability and steady-
state distribution under appropriate conditions. However, the
applicability of the classical singular perturbation theory is
still limited. This is because the classical theory is based on
the premise that systems of interest are intrinsically separated
into subsystems having different time scales [9], [10]. It
should be remarked that most of the existing error analyses
are carried out based on this time scale separation, which
often leads to the asymptotic analysis in the time domain
[11], [12].

In view of this, we attempt to develop a novel singular
perturbation-based model reduction method for semistable
linear systems. Our mathematical formulation does not re-
quire a priori time scale separation. Instead, we introduce a
pre-conditioning coordinate transformation to separate time
scales. In this formulation, we analyze how the coordinate
selection affects the stability and approximation error. Unlike
the classical theory, our error analysis is based on deriving
a novel expression of error systems in the Laplace domain,
which provides an insight to properly quantifying the approx-
imation quality. This work is a generalization of our work
in [13], where we have developed a singular perturbation
approximation for stable systems. This generalization enables
us to deal with more broader class of systems including
Markov chain systems and multi-agent systems arising in
consensus problems. It should be remarked that the approx-
imation of semistable systems is more challenging task than
that of stable systems. This is because the (semi)stability of
approximants does not necessarily imply the stability of the
error system. In this paper, we prove the stability of the error
system by exactly preserving the semistable eigenspaces of
the original system into those of the singular perturbation
model.

The rest of this paper is organized as follows: In Section II,
we mathematically formulate a singular perturbation approx-
imation to be investigated. In Section III, we provide main
results of this paper, which include the derivation of a novel
error system expression in the Laplace domain, the stability
analysis of the error system, and the approximation error
analysis in terms of the H2-norm. Furthermore, based on this
theoretical development, we provide an algorithm to imple-
ment the proposed approximation method systematically. In
Section IV, we show the efficiency of the proposed approx-
imation through a numerical example, where the reduction



of a Markov chain model is considered. Finally, concluding
remarks are provided in Section V.

NOTATION The following notation is to be used. R: the
set of real numbers; im(M): the image of a matrix M ;
tr(M): the trace of a matrix M ; ∥M∥: the induced 2-
norm of a matrix M , i.e., the maximum singular value of
M ; V ⊥ W: the orthogonality of the spaces between V
and W , i.e., vTw = 0 holds for all v ∈ V and w ∈
W; diag(M1, . . . ,Mn): the block diagonal matrix whose
diagonal blocks are composed of matrices M1, . . . ,Mn.

The negative (semi)definiteness of a matrix M ∈ Rn×n,
which is not necessarily symmetric, is denoted by M ≺ On

(M ⪯ On), i.e., xTMx < 0 (xTMx ≤ 0) holds for all
x ̸= 0 ∈ Rn. Similarly, the positive definiteness is denoted
by M ≻ On.

A matrix A (resp. a transfer matrix G) is said to be
semistable if its eigenvalues (poles) are all in the closed left-
half plane, and all eigenvalues (poles) on the imaginary axis
are simple. In particular, A (resp. G) is said to be stable if
all eigenvalues (poles) are in the open left-half plane.

For transfer matrices, we use the notation of[
A B
C D

]
:= C(sIn −A)−1B +D.

The H∞-norm of a stable proper transfer matrix G and the
H2-norm of a stable strictly proper transfer matrix G are
defined by

∥G(s)∥H∞ := sup
ω∈R
∥G(jω)∥

∥G(s)∥H2
:=

(
1

2π

∫ ∞

−∞
tr(G(jω)GT(−jω))dω

) 1
2

,

respectively.

II. PRELIMINARIES

In this section, we mathematically formulate a singular
perturbation approximation to be investigated. Let us con-
sider a linear system

Σ :

{
ẋ = Ax+Bu
y = Cx+Du

(1)

with A ∈ Rn×n, B ∈ Rn×mu , C ∈ Rmy×n and D ∈
Rmy×mu . In the literature on the singular perturbation theory,
it is often assumed that the system (1) intrinsically has
several different time scales [9], [10]. In contrast to this, we
do not impose such an assumption, but introduce a coordinate
transformation to decouple time scales. More specifically,
considering the coordinate transformation of Σ by a unitary
matrix [P, P ] ∈ Rn×n with P ∈ Rn×n̂ and P ∈ Rn×(n−n̂),
we obtain

Σ̃ :


[

ξ̇
η̇

]
=

[
PTAP PTAP

P
T
AP P

T
AP

][
ξ
η

]
+

[
PTB

P
T
B

]
u

y =
[
CP CP

] [ ξ
η

]
+Du.

(2)

To reduce the dynamical dimension of Σ̃, let us impose η̇ ≡
0, which means that the behavior of η is to be algebraically
determined by ξ and u. In other words, the static state η̂,
which denotes the approximant of η, is constrained by the
algebraic equation

η̂ = −(PT
AP )−1P

T
AP ξ̂ − (P

T
AP )−1P

T
Bu (3)

where ξ̂ is the approximant of ξ and P
T
AP is assumed to

be non-singular. This approximation is intuitively reasonable
when the convergence rate of η is sufficiently faster than that
of ξ.

Substituting (3) into the equation with respect to ξ̇, we
have the singular perturbation model

Σ̂sp :

{
˙̂
ξ = Âξ̂ + B̂u

ŷ = Ĉξ̂ + D̂u
(4)

where
Â := PTAP − PTAΠAP ∈ Rn̂×n̂

B̂ := (PT − PTAΠ)B ∈ Rn̂×mu (5)
Ĉ := C(P −ΠAP ) ∈ Rmy×n̂

D̂ := D − CΠB ∈ Rmy×mu

and
Π := P (P

T
AP )−1P

T ∈ Rn×n. (6)

Note that this Π does not depend on the basis selected for
the projection P . This follows from the fact that

Π = PH(HTP
T
APH)−1HTP

T

holds for any unitary matrix H ∈ R(n−n̂)×(n−n̂). This
implies that the singular perturbation model Σ̂sp in (4)
depends only on the choice of P . In the following section,
we analyze how the choice of the projection P affects the
approximation error between Σ and Σ̂sp.

III. SINGULAR PERTURBATION ANALYSIS

A. Factorization of Error System

In the rest of this paper, we define the transfer matrix of
Σ in (1) by

G(s) :=

[
A B
C D

]
. (7)

Furthermore, we define the set of projectors

Pn×n̂ := {P ∈ Rn×n̂ : PTP = In̂, n̂ ≤ n}. (8)

In this notation, the approximant of G is defined as follows:
Definition 1: Consider a transfer matrix G in (7). The

singular perturbation approximant of G associated with
P ∈ Pn×n̂ is defined by

Ĝ(s;P ) :=

[
Â B̂

Ĉ D̂

]
(9)

where Â, B̂, Ĉ and D̂ are given by (5).
Obviously, the quality of the approximant Ĝ depends on

the determination of P ∈ Pn×n̂. In literature on the singular



perturbation theory, most of error analyses are carried out ei-
ther in the time domain by using the asymptotic analysis [11],
[12], or based on the premise of the balanced realization [14].
In contrast to this, we analyze the approximation error in the
Laplace domain without relying on the balanced realization.
The following theorem shows a tractable representation of
the error system in the Laplace domain:

Theorem 1: Given a transfer matrix G in (7), let Ĝ be
the singular perturbation approximant of G in (9) associated
with P ∈ Pn×n̂. Then

G(s)− Ĝ(s;P ) = Ξ(s;P )P P
T
X(s) (10)

holds, where

Ξ(s;P ) :=

[
Â PTAΠ

Ĉ CΠ

]
, X(s) :=

[
A B
A B

]
(11)

with Â and Ĉ defined in (5).
Proof: Denote the error system by

G(s)− Ĝ(s;P ) :=

[
Ae Be

Ce De

]
where Ae = Diag(Â, A), Be = [B̂T, BT]T, Ce = [−Ĉ, C]
and De = −D̂+D. Considering the similarity transformation
of the error system with

T =

[
In̂ −(PT − PTAΠ)PPT

0 In

]
,

T−1 =

[
In̂ (PT − PTAΠ)PPT

0 In

]
,

we have

TAeT
−1 =

[
Â A
0 A

]
, TBe =

[
−PTAΠP P

T
B

B

]
CeT

−1 =
[
−Ĉ C

]
, De = CΠB

(12)
where

A = Â(PT − PTAΠ)PPT − (PT − PTAΠ)PPTA

C = −Ĉ(PT − PTAΠ)PPT + C.

To make the following argument clear, we first assume that

Â(PT − PTAΠ)PPT = (PT − PTAΠ)A (13)

holds. Under this assumption, we have

A = (PT − PTAΠ)(In − PPT)A = −PTAΠP P
T
A.

Furthermore, we have

C = −C
{
(In −ΠA)(In − P P

T
)− In

}
= CΠA.

Thus, the block structure of (12) implies that the error system
G− Ĝ is given by

Ĉ(sIn̂ − Â)−1PTAΠP P
T
A(sIn −A)−1B + CΠB

+ Ĉ(sIn̂ − Â)−1PTAΠP P
T
B + CΠA(sIn −A)−1B.

By noting that Π = ΠP P
T

holds, the factorization of (10)
is verified.

What remains to be shown is (13). To this end, it suffices
to show that

PT(In −AΠ)A
{
P (PT − PTAΠ)PPT − In̂

}
= 0

where Â = PT(In−AΠ)AP is substituted. By using ΠP =
0, the left-hand side is equal to

PT(In −AΠ)A(PPT − In̂)

= PT(In −AΠ)AP P
T
= PT(AP −AP )P

T
= 0

which proves (13).
The factorization of the error system shown in Theorem 1

provides an interesting insight, that is, the singular pertur-
bation approximation works well if the norm of P

T
X is

sufficiently small, where P is an orthogonal complement of
P . It is also interesting to note that X in (11) coincides with
the transfer matrix from u to ẋ of the original system Σ.

B. Stability Analysis of Error System

Next, we investigate the relation between the choice of P
and the stability of the error system. In the rest of this paper,
we assume that the original system Σ in (1) is semistable and,
for simplicity, A is diagonalizable.

1) Case of Stable Systems: First of all, we state the
following fundamental lemma to ensure the (semi)stability
preservation of the approximant:

Lemma 1: For any A ∈ Rn×n and P ∈ Pn×n̂, Â ∈
Rn̂×n̂ in (5) is factorized as

Â = (PT − PTAΠ)A(PT − PTAΠ)T (14)

where Π ∈ Rn×n is defined by (6). In addition, if A ≺ On

(resp. A ⪯ On) holds, then Â ≺ On̂ (Â ⪯ On̂) holds.
Proof: Using the relation of

(PT − PTAΠ)PPT{(PT − PTAΠ)PPT}T = In̂ (15)

for (13), we obtain

Â = (PT − PTAΠ)APPT(PT − PTAΠ)T

=
[
(PT − PTAΠ)A(In − P P

T
)
]
(PT − PTAΠ)T

=
[
(PT − PTAΠ)A

]
(PT − PTAΠ)T,

which proves (14). Note that (15) implies that

rank(Z) = n̂, Z := PT − PTAΠ.

This is proven by the fact that if we assume rank(Z) < n̂,
then

rank(ZPPT) ≤ min(rank(Z), rank(PPT)) < n̂,

which contradicts rank(ZPPT) = rank(In̂) = n̂. There-
fore, if A ≺ On (A ⪯ On), then Â ≺ On̂ (Â ⪯ On̂).

Lemma 1 shows that the negative (semi)definiteness of
A, which is a stronger (semi)stability condition, is preserved
through the singular perturbation approximation. Obviously,
the error system G − Ĝ in (10) is stable if both A ≺ On

and Â ≺ On̂ hold. Note that for any stable matrix A ∈



Rn×n, V 1
2
AV −1

1
2

≺ On holds for the Cholesky factor V 1
2

of
a Lyapunov function such that

V = V T
1
2
V 1

2
≻ On, V A+ATV ≺ On.

This fact ensures the existence of a pre-conditioning coordi-
nate transformation to make stable A negative definite.

2) Case of Semistable Systems: It should be remarked
that the semistability of the approximant does not imply the
stability of the error system. To guarantee its stability, we
need further consideration on semistable eigenspaces. We
define the eigenspace E of A associated with all eigenvalues
on the imaginary axis by

v ∈ E(A) ⇔ ∃λ ∈ R s.t. Av = jλv.

Furthermore, we define the space spanned by all v ∈ E as

V(A) =
∑

∀v∈E(A)

im(v).

Using this notation, we state the following lemma:
Lemma 2: Let A ∈ Rn×n and P ∈ Pn×n̂ be given. If
V(A) ⊆ im(P ) holds, then PTv ∈ V(Â) holds for any v ∈
V(A), where Â ∈ Rn̂×n̂ in (5). Similarly, if V(AT) ⊆ im(P )
holds, then PTv ∈ V(ÂT) holds for any v ∈ V(AT).

Proof: If V(A) ⊆ im(P ), then for any v ∈ V(A)

PPTv = v, P
T
v = 0

hold, where P denotes an orthogonal complement of P .
Thus, there exists λ ∈ R such that Â(PTv) = jλ(PTv),
which implies PTv ∈ V(Â). The second claim is also proven
by the same manner.

Lemma 2 provides a condition to exactly preserve the
particular left and right eigenspaces upon the approximation
in (4). For convenience of notation, we define the set

An×n := {A ∈ Rn×n : A ⪯ On, V(A) = V(AT)}. (16)

The following fact is fundamental for the arguments below:
Lemma 3: For any semistable A ∈ Rn×n, there exists a

non-singular matrix V ∈ Rn×n such that V −1AV ∈ An×n

holds.
Proof: We denote the dimension of V(A) by ν. By

eigendecomposition, there exist V = [V1, V2] ∈ Rn×n and
V −1 = [UT

1 , U
T
2 ]

T ∈ Rn×n such that

U1AV1 + (U1AV1)
T = 0, U2AV2 = diag(λ1 . . . , λn−ν)

for the diagonal blocks of

V −1AV =

[
U1AV1 0

0 U2AV2

]
.

Note that U1AV1 is a skew symmetric matrix that satisfies
V(U1AV1) = V((U1AV1)

T). Hence, the claim follows.
This lemma shows that there always exists a coordinate

transformation that changes the semistability into the nega-
tive semidefiniteness and matches the particular left and right
eigenspaces. This match of the left and right eigenspaces is

useful for preserving the eigenspaces, and will play a nice
role for constructing a qualified approximant. Unfortunately,
finding such coordinate transformation for general semistable
matrices relies on the eigendecomposition, which possibly
requires heavy computational load for large-scale systems.
However, for irreducible Metzler matrices, we do not need
the full eigendecomposition; see Remark 1.

Combining all lemmas above, we obtain the following
theorem that ensures the stability of the error system:

Theorem 2: Given a transfer matrix G in (7), let Ĝ be
the singular perturbation approximant of G in (9) associated
with P ∈ Pn×n̂. Assume that A ∈ An×n. If V(A) ⊆ im(P )
holds, then the error system G− Ĝ is stable.

Proof: To prove the claim, it suffices to show that
both Ξ and P

T
X in (10) are stable. Obviously, P

T
X is

semistable due to the assumption of A ⪯ On. Furthermore,
we notice that P

T
Av = 0 holds for all v ∈ V(A) ⊆ im(P ).

This implies that the eigenspace of the observability pair
(A,P

T
A) associated with all eigenvalues on imaginary axis

is unobservable. Thus, P
T
X is stable.

Similarly, we consider the eigenspace of the controllability
pair (Â, PTAΠ). Note that the semistability of Ξ is ensured
by Lemma 1. From Lemma 2 and the assumption of V(A) =
V(AT), we verify that PTv ∈ V(ÂT) holds for any v ∈
V(AT) ⊆ im(P ). Thus, we have

(PTv)TPTAΠ = vTPPTAΠ = vTAΠ = 0,

which means the uncontrollability of the eigenspace. Hence,
Ξ is stable as well.

Theorem 2 provides a sufficient condition to ensure the
stability of the error system. The proof of this theorem
is based on the fact that the semistable eigenspace of the
original system is exactly preserved into that of the singular
perturbation model.

Remark 1: For any semistable irreducible Metzler matrix
A ∈ Rn×n, there exists a positive diagonal matrix D ∈
Rn×n such that D−1AD ∈ An×n holds [15]. In addition, the
diagonal entries of D can be constructed by using the left and
right Frobenius eigenvectors of A, which is efficiently found
by the existing algorithms such as the power method [1].
Thus, a coordinate transformation to achieve A ∈ An×n can
be efficiently found for positive systems including electric
circuit systems and Markov chain systems [16].

C. Construction of Approximant

In this subsection, we construct an approximant with a
good approximation quality. Recall that the singular pertur-
bation approximation works well if the norm of P

T
X is suf-

ficiently small. The following lemma provides an expression
of the H2-norm of P

T
X:

Lemma 4: Consider the transfer matrix X in (11) and
assume that A ∈ An×n. Let [V, V ] ∈ Rn×n be a unitary
matrix such that im(V ) = V(A) holds. Define

Φ := V
T
AV ϕV

T
ATV ∈ R(n−ν)×(n−ν) (17)



where ν denotes the dimension of V(A) and

ϕ :=

∫ ∞

0

eV
T
AV τV

T
B(eV

T
AV τV

T
B)Tdτ. (18)

If im([V,B]) ⊆ im(P ) holds, then the H2-norm of P
T
X is

bounded and is given by

∥PT
X(s)∥H2 =

√
tr(P

T
V ΦV

T
P ). (19)

Proof: Using the relations P
T
B = 0, P

T
AV = 0 and

P
T
= P

T
V V

T
, we have

P
T
X(s) = P

T
A(sIn −A)−1B + P

T
B

= P
T
A[V, V ](sIn − Ã)−1[V, V ]−1B

= [0, P
T
AV ](sIn − Ã)−1

[
V TB

V
T
B

]
= P

T
AV X̃(s)

= P
T
V V

T
AV X̃(s)

where X̃(s) := (sIn−ν − V
T
AV )−1V

T
B is strictly proper

and stable, and

Ã := [V, V ]−1A[V, V ] =

[
V TAV 0

0 V
T
AV

]
.

Note that ϕ is the controllability gramian of X̃ . Thus

∥PT
X(s)∥2H2

= tr(P
T
V ΦV

T
P )

follows.
Note that if A is stable, namely, if V(A) = ∅, then V is

reduced to In. This means that if the original Σ is stable,
ϕ in (18) coincides with the usual controllability gramian of
Σ, and Φ in (17) is reduced to AϕAT, which coincides with
the controllability gramian of the state-derivative. Based on
Lemma 4, we obtain the following theorem to regulate the
approximation quality:

Theorem 3: Given a transfer matrix G in (7), let Ĝ be the
singular perturbation approximant of G in (9) associated with
P ∈ Pn×n̂. Assume that A ∈ An×n. Let [V, V ] ∈ Rn×n be a
unitary matrix such that im(V ) = V(A) holds. Furthermore,
let [W,W ] ∈ R(n−ν)×(n−ν) be a unitary matrix such that

ΦW = Wdiag(λ1, . . . , λL)

holds for Φ ∈ R(n−ν)×(n−ν) in (17), where ν denotes the
dimension of V(A). If

im(P ) = im([V, V W,B]) (20)

holds, then Ĝ in (9) satisfies

∥Ĝ(s;P )−G(s)∥H2 ≤ ∥Ξ(s;P )∥H∞

√√√√ L∑
l=1

λl (21)

where Ξ is defined in (11).
Proof: Using Theorem 1, we have

∥Ĝ(s;P )−G(s)∥H2
≤ ∥Ξ(s;P )∥H∞∥P

T
X(s)∥H2

.

Note that (20) is sufficient for im([V,B]) ⊆ im(P ). Thus,
from Lemma 4, we verify that the H2-norm of P

T
X is given

by (19). For its value, we have

tr(P
T
V ΦV

T
P ) ≤ tr(W

T
V

T
V ΦV

T
V W ) =

L∑
l=1

λl

where V
T
V = In−ν and the first inequality follows from the

Cauchy interlacing theorem with im(P ) ⊆ im(W ).
This theorem shows that the singular perturbation approx-

imation works well if the sum of eigenvalues of Φ that are
neglected through the approximation is small enough. This
is similar to the balanced truncation [1], where an H∞-error
bound is related to the sum of neglected Hankel singular
values. On the other hand, it should be remarked that our
singular perturbation approximation takes into account only
the controllability for the order reduction while the balanced
truncation deals with the controllability and observability
simultaneously.

Based on the theoretical analysis in Theorem 3, we provide
the following algorithm to find P ∈ Pn×n̂ such that λi < ϵ
hold for all i ∈ {1, . . . , L} in (21):

(a) Find a coordinate transformation such that A ∈ An×n

holds, and construct a unitary matrix [V, V ] ∈ Rn×n

such that im(V ) = V(A) holds.
(b) Prescribe a threshold ϵ, and let a null matrix W .
(c) Calculate the index matrix Φ in (17) from (A,B), and

find all eigenpairs (λi, wi) of Φ for i ∈ {1, . . . , n− ν}.
(d) For each i ∈ {1, . . . , n − ν}, update W ← [W,wi] if

λi ≥ ϵ.
(e) Find P ∈ Pn×n̂ such that (20) holds by the Gram-

Schmidt process.

In this proposed algorithm, the threshold ϵ can be used as
a parameter to regulate the approximation error.

IV. NUMERICAL EXAMPLE

We show the efficiency of the proposed method through a
numerical example. In what follows, we deal with a 50th
dimensional continuous-time Markov chain model, whose
state transition diagram is depicted in Fig. 1. Its dynamics is
given as {

ẋ = Ax, x(0) = x0

y = Cx
(22)

where x0 ∈ R50 is an initial state and

A =


−2 1 1

1 −2
. . .

. . . . . . 1
1 1 −2

 , C = [1, 0, . . . , 0]. (23)

It is readily verified that A ⪯ O50 and V(A) = V(AT) =
[1, . . . , 1]T hold, and thus A ∈ A50×50 is satisfied.

In order to approximate the system behavior for any
initial state x0, we apply the dual counterpart of Theorem 3,
namely we approximate the state-to-output mapping defined
by (A,C). More specifically, we use Theorem 3 by replacing



Fig. 1. State Transition Diagram of Markov Chain.
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Fig. 2. Eigenvalues of Φ.

the pair (A,B) with (AT, CT) in (23). The semi-log plot of
the eigenvalues of Φ ∈ R49×49 in (17) is shown in Fig. 2.
From this figure, we can see that many of the eigenvalues
are much smaller than the maximal (the first) eigenvalue.

Next, we show that the threshold ϵ in the proposed algo-
rithm is used as a parameter to regulate the approximation
error. By assigning ϵ as 10−2, 10−3 and 10−5, we obtain 4-,
6- and 9-dimensional singular perturbation models, respec-
tively. With the initial state x0 = e10, which denotes the 10th
canonical unit vector, the output trajectories of the original
system (the solid line) and the singular perturbation models
(the broken lines) are shown in Fig. 3. This figure shows
that the output discrepancy between the original system
and the singular perturbation model reduces with decreasing
the value of ϵ. As shown in this numerical example, the
threshold ϵ can be used as a design criterion to regulate the
approximation error.

V. CONCLUSION

In this paper, we have proposed a singular perturbation
approximation for semistable linear systems. The proposed
method is a generalization of our method in [13], where
a singular perturbation approximation for stable systems
is developed by using the reciprocal transformation. The
proposed method provides a singular perturbation model,
whose approximation quality in terms of the H2-norm is
regulated in a systematic manner. The efficiency of the
proposed method has been shown through an example of
Markov chain approximation.
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