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Large-Scale Network Systems 

homes 

homes 
Micro Grid 

Hydroelectric  
power 

Thermal power 

PV 

Power line 
Power Network 

How should we stabilize? 

Tokyo area: 20 million houses 
rate of houses with PV will increase 
up to 50% by 2030 (PV2030) 
50% of total maximum power 
 

Traffic Network 

How should we improve? 

Center of Tokyo area:  5 million cars 
Heavy traffic jam 
average velocity  20km/h 
 

Model reduction is one prospective approach 
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Model Reduction Methods 
✓ 

Balanced truncation,  Hankel norm approximation 
error bound, stability preservation     high computational cost  

Krylov projection 
lower computational cost     possibly unstable model, no error bound  

Standard methods: 

Main goal:  Find      such that               is small enough 

+ stability preservation, error bound derivation, low computational cost 
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Input 

Output Heat diffusion 



Drawback of Standard Methods 

Network system 

Drawback:  Network structure is lost through reduction 

No specific structure 

Sparse  
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Reduced model 

Dense  



Clustered Model Reduction 

Sparse  

Cluster state 

Preservation of network structure among clusters 

: row vector 

Network system 
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Reduced model 



Why Clustered Model Reduction? 

Gene Network 

Clustered model reduction 

Extract essential principle 
to show mechanism of functions 

[Mochizuki et al. , J. Theoretical Biology  (2010)] 

Other possible application: Hierarchical decentralized control 
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Typical System Norm 

: Laplace transform 

Stable system 
impulse response 

Transfer function 

solution 

✓ 
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-norm Maximum gain 

-norm Energy of impulse response 

: Frobenius norm 
-norm of  

✓ 



System Description 

[Definition]  Bidirectional Network 

with and 

is said to be bidirectional network if      is symmetric and stable.  

Reaction-diffusion systems: 
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Clustered Model Reduction Problem 

Bidirectional network 

Sparse  

Cluster state 

: row vector 

Reduced model 

Sparse  

Aggregated state 

✓ 

[Problem] Given            , find a block-diagonal                    such that 

where                                         and   
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(i) Find a set of reducible clusters 
(ii) Find suitable aggregation weights  



How to Formulate Reducibility? 
[State trajectory under random      ] 

               can be aggregated 
into 7-dim. variable? 

7 clusters 

50 nodes,  nonzero        is  
randomly chosen from 

50 trajectories 

Bidirectional network 

Let                   A cluster                             is said to be reducible if 

for any 

[Definition]  Reducible cluster 
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Positive Tridiagonalization 

Positive tridiagonal realization Bidirectional network 

Metzler 

(not necessarily positive) 

[Lemma] 
such that                                           has the following structure. 
For every bidirectional network           , there exists a unitary 

✓  
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Reducibility Characterization 

Bidirectional network 

Equivalent characterization of cluster reducibility 

reducible reducible 

: positive tridiagonal realization 
: transformation matrix 

Index matrix 

: DC-gain       Maximal gain 

identical 

identical 

owing to positivity 
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  -Reducible Cluster Construction 

[Definition]      -reducible Cluster 

A cluster       is said to be    -reducible if 

: coarseness parameter 

Procedure for finding a cluster set 

(i) Given                          , calculate the index 

(ii) For a fixed    , find                         satisfying    
      above definition of   -reducibility   

matrix 
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Reducible Cluster Aggregation 

[Theorem] Define                                          with 

If all clusters are    -reducible,  then 

holds where  linear dependence on 

Bidirectional network 

Reduced model 

with 

Fine 

Coarse 
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Remarks 

Clustered model reduction 
preserves stability & network structure of original system 
provides a priori         -error bound 
gives method to find a cluster set 
requires low computational cost  

This method can be extended to 
multi-input systems 
positive directed networks 

asymmetric       with nonnegative off-diagonal entries 
a priori        -error bound 

[T. Ishizaki et al. ACC12, CDC12] 

[T. Ishizaki et al. IEEE TAC (2014)] 
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47 nodes 

Scale-Free Networks 

Hole-Kim model (1000 nodes) 
small world, high cluster coefficient 
random edge weights 

27 nodes 
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Computational Complexity 

Dim. of original networks 
Matlab R2011b 64bit Intel® Core™  i7-2620M CPU @2.70GHz,  RAM 16.0GB 
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Scale-Free vs Erdős-Rényi Networks 

1000 nodes, around 2000 edges, two inputs 
Random edge weights 
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More effective for scale-free networks 
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Application to Chemical Reaction 

Michaelis-Menten system 

(a) 

(b) 

(b) 

(a) 

# of         &         are initially both  

CME expression 

(in practice, more than 10000-dim. ) ✓  -dim. 

: Probability of   th distribution 

Approximate                in terms of      -norm (     -norm) 
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Clustered Model Reduction of CME 

th order th order if 

[Trajectories of     and         ] 

relative error 

: dot lines 
: solid lines 

Cluster size 

one HUGE cluster 
 is made # 

of
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       states are 
not aggregated 

✓  Preservation: 
property as probability steady state 
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Application to 
Average State Observation 

Network system Average state observer 

Find                                          such that                     is small enough 

: Observation 
: System state 

[Time] 

Observation by 5-dim. 1000-dim. 
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Concluding Remarks 

Clustered model reduction 
extract essential information on input-to-state mapping 
application to scale-free networks, CMEs, average state observation 

 
Open problems: 

approximation of input-to-output mapping 
more sophisticated clustering algorithm 
networks of high-dimensional subsystems 
nonlinear systems 
application to control system design 
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