

石崎 孝幸 (東京工業大学)

- Introduction: Why clustered model reduction?
- Clustered Model Reduction Theory

Power Network

- Tokyo area: 20 million houses
 - rate of houses with PV will increase up to 50% by 2030 (PV2030)
 - 50% of total maximum power

Model reduction is one prospective approach

Trame Network

- Center of Tokyo area: 5 million cars
 - Heavy traffic jam
 - average velocity 20km/h

How should we improve?

<u>Main goal</u>: Find P such that $||y - \hat{y}||$ is small enough

+ stability preservation, error bound derivation, low computational cost

Standard methods:

- Balanced truncation, Hankel norm approximation
 - error bound, stability preservation ⁽²⁾ high computational cost ⁽³⁾
- Krylov projection
 - ▶ lower computational cost ☺ possibly unstable model, no error bound ☺

Network system

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = Ax + Bu\\ y = Cx \end{array} \right.$$

Reduced model

$$\hat{\Sigma}: \left\{ \begin{array}{l} \dot{\hat{x}} = PAP^{\dagger}\hat{x} + PBu\\ \hat{y} = CP^{\dagger}\hat{x} \end{array} \right.$$

No specific structure

Sparse 😳

Dense 🟵

Drawback: Network structure is lost through reduction

Network system

$$\Sigma: \left\{ \begin{array}{l} \dot{x} = Ax + Bu\\ y = Cx \end{array} \right.$$

Reduced model

$$\hat{\Sigma}: \begin{cases} \dot{\hat{x}} = PAP^{\dagger}\hat{x} + PBu\\ \hat{y} = CP^{\dagger}\hat{x} \end{cases}$$

Preservation of network structure among clusters

Why Clustered Model Reduction?

<u>Gene Network</u> [Mochizuki et al. , J. Theoretical Biology (2010)]

Other possible application: Hierarchical decentralized control

- Introduction: Why clustered model reduction?
- Clustered Model Reduction Theory

Stable system Σ : $\begin{cases}
\dot{x} = Ax + Bu & \text{solution} \quad y(t) = \int_0^t h(t - \tau)u(\tau)d\tau \\
y = Cx & \text{impulse response} \quad h(t) := Ce^{At}B
\end{cases}$

Transfer function $H(s) := \mathscr{L}[h] = C(sI_n - A)^{-1}B \quad \checkmark \mathscr{L}[*]$: Laplace transform

$$\underline{\mathcal{H}_2\text{-norm}} \|H\|_{\mathcal{H}_2} := \left(\int_{-\infty}^{\infty} \|H(j\omega)\|_F^2 \frac{d\omega}{2\pi}\right)^{\frac{1}{2}} = \|h\|_{\mathcal{L}_2} \text{ Energy of impulse response}$$

$$\checkmark \left\{ \begin{array}{l} \mathcal{L}_2 \text{-norm of } f : \mathbb{R}_+ \to \mathbb{R}^{p \times m} \quad \|f\|_{\mathcal{L}_2} := \left(\int_0^\infty \|f(t)\|_F^2 \, dt \right)^{\frac{1}{2}} \\ \|*\|_F : \text{Frobenius norm} \end{array} \right.$$

[Definition] **Bidirectional Network** (A, b)

$$\dot{x} = Ax + Bu$$
 with $A = \{a_{i,j}\} \in \mathbb{R}^{n \times n}$ and $B = \{b_i\} \in \mathbb{R}^n$

is said to be *bidirectional network* (A, B) if A is symmetric and stable.

Reaction-diffusion systems: $\dot{x}_i = -r_i x_i + \sum_{j=1, j \neq i}^n a_{i,j} (x_j - x_i) + b_i u$

How to Formulate Reducibility?

3

<u>Bidirectional network</u> $\dot{x} = Ax + Bu$

50 nodes, nonzero $a_{i,j}$ is randomly chosen from (0, 1] $x \in \mathbb{R}^{50}$ can be aggregated into 7-dim. variable?

2

3

50 trajectories

[State trajectory under random u]

[Definition] Reducible cluster

Let x(0) = 0. A cluster $\mathcal{I}_{[l]} \subseteq \{1, \ldots, n\}$ is said to be <u>reducible</u> if

-2^L₀

 $\forall i, j \in \mathcal{I}_{[l]}, \ \exists \rho_{i,j} \ge 0 \ \text{ s.t. } x_i(t) \equiv \rho_{i,j} x_j(t) \ \text{ for any } u(t).$

7 clusters

 $\frac{1}{4}t$

Positive Tridiagonalization

[Lemma] For every bidirectional network (A, B), there exists a unitary $H \in \mathbb{R}^{n \times n}$ such that $(\tilde{A}, \tilde{B}) = (H^{\mathsf{T}}AH, H^{\mathsf{T}}B)$ has the following structure.

13/26

Reducibility Characterization

Bidirectional network (A, B)

 (\tilde{A}, \tilde{B}) : positive tridiagonal realization H: transformation matrix

Index matrix

$$\Phi := H \operatorname{diag}(-\tilde{A}^{-1}\tilde{B})$$

 $-\tilde{A}^{-1}\tilde{B}$: DC-gain \Leftrightarrow Maximal gain owing to positivity

$$\Phi = \begin{bmatrix} \frac{1 & 0 & 0 & 0 & 0 \\ 0 & 1.20 & -0.20 & 0 & 0 \\ \hline 0 & 1.20 & -0.20 & 0 & 0 \\ \hline 0 & 0.60 & 0.40 & 0 & 0 \\ \hline 0 & 0.60 & 0.40 & 0 & 0 \end{bmatrix}$$
 identical

Equivalent characterization of cluster reducibility

 θ -Reducible Cluster Construction

[Definition] θ -reducible Cluster

A cluster $\mathcal{I}_{[l]}$ is said to be <u> θ -reducible</u> if

$$\forall j \in \mathcal{I}_{[l]}, \ \exists i \in \mathcal{I}_{[l]}, \ \rho_{i,j} \ge 0 \ \text{ s.t. } \left\| \operatorname{row}_{i}[\Phi] - \rho_{i,j} \operatorname{row}_{j}[\Phi] \right\|_{l_{\infty}} \le \theta$$

θ : coarseness parameter

Procedure for finding a cluster set

(i) Given $\dot{x} = Ax + Bu$, calculate the index matrix $\Phi = H \text{diag}(-\tilde{A}^{-1}\tilde{B})$

(ii) For a fixed θ , find $\{\mathcal{I}_{[1]}, \ldots, \mathcal{I}_{[\hat{n}]}\}\$ satisfying above definition of θ -reducibility

15/26

Reducible Cluster Aggregation

[Theorem] Define
$$P = \text{Diag}(p_{[1]}, \dots, p_{[\hat{n}]})$$
 with $p_{[l]} = \frac{[\rho_{i,j}]_{j \in \mathcal{I}_{[l]}}}{\|[\rho_{i,j}]_{j \in \mathcal{I}_{[l]}}\|}$.
If all clusters are θ -reducible, then
 $\|g(s) - \hat{g}(s)\|_{\mathcal{H}_{\infty}} \leq \sqrt{\alpha} \|(PAP^{\mathsf{T}})^{-1}PA\|\theta$
holds where $\alpha := \sum_{l=1}^{\hat{n}} |\mathcal{I}_{[l]}|(|\mathcal{I}_{[l]}| - 1)$. linear dependence on θ

Reduced model (PAP^{T}, PB) $\hat{g}(s) = P^{\mathsf{T}} (sI_{\hat{n}} - PAP^{\mathsf{T}})^{-1} PB$ with $P = \text{Diag}(p_{[1]}, \dots, p_{[\hat{n}]}) \in \mathbb{R}^{\hat{n} \times n}$

Bidirectional network (A, B) $g(s) = (sI_n - A)^{-1} B$

- Clustered model reduction
 - preserves stability & network structure of original system
 - provides a priori \mathcal{H}_{∞} -error bound
 - gives method to find a cluster set
 - requires low computational cost $O(n^3)$

[T. Ishizaki et al. IEEE TAC (2014)]

- This method can be extended to
 - multi-input systems
 - positive directed networks
 - asymmetric A with nonnegative off-diagonal entries
 - a priori \mathcal{H}_2 -error bound

[T. Ishizaki et al. ACC12, CDC12]

- Introduction: Why clustered model reduction?
- Clustered Model Reduction Theory

- Hole-Kim model (1000 nodes)
 - small world, high cluster coefficient
 - random edge weights

 \mathcal{U}

$$\frac{\|g - \hat{g}\|_{\mathcal{H}_{\infty}}}{\|g\|_{\mathcal{H}_{\infty}}} = \begin{cases} 5.93 \times 10^{-2} \% & (\theta = 1.5) \\ 9.09 \times 10^{-2} \% & (\theta = 3.0) \end{cases}$$
27 nodes
19/26

Matlab R2011b 64bit Intel® Core™ i7-2620M CPU @2.70GHz, RAM 16.0GB

20/26

Scale-Free vs Erdős-Rényi Networks

- 1000 nodes, around 2000 edges, two inputs
- Random edge weights

Application to Chemical Reaction

 $[S_1]$

of $(S_1) \& (S_2)$ are initially both K = 2

 $\widehat{S_2}$

(b)

 S_3

 S_2

 (S_3)

 \mathcal{X} 3

 x_5

 x_6

 S_3

(a)

 \rightleftharpoons

 x_2

 x_{\measuredangle}

Michaelis-Menten system	
$S_1 + S_2 \stackrel{c_1}{\underset{c_2}{\rightleftharpoons}} S_3$	(a)
$S_3 \xrightarrow{c_3} S_2 + S_4$	(b)
$(c_1 = 1, c_2 = 0.1, c_3 =$	(3)

 $x_i \in [0,1]$: Probability of ith distribution

CME expression

$$\dot{x} = Ax, \quad x(0) = [1, 0, \dots, 0]^{\mathsf{T}}$$

✓
$$\frac{(K+1)(K+2)}{2}$$
-dim. (in practice, more than 10000-dim. Θ)

 \mathcal{X}

<u>Approximate</u> $e^{At}x(0)$ in terms of \mathcal{L}_2 -norm (\mathcal{H}_2 -norm)

23/26

Network system

Average state observer

$$\Sigma: \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \qquad O_P: \begin{cases} \dot{\hat{x}} = PAP^{\mathsf{T}}\hat{x} + PBu + H(y - \hat{y}) \\ \hat{y} = CP^{\mathsf{T}}\hat{x} \end{cases}$$

Find $P = \text{Diag}(\mathbf{1}_{n_1}, \dots, \mathbf{1}_{n_L})$ such that $||Px - \hat{x}||$ is small enough

Clustered model reduction

- extract essential information on input-to-state mapping
- application to scale-free networks, CMEs, average state observation

Open problems:

- approximation of input-to-output mapping
- more sophisticated clustering algorithm
- networks of high-dimensional subsystems
- nonlinear systems
- application to control system design

Collaborators:

- Kenji Kashima (Kyoto University)
- Jun-ichi Imura (Tokyo Institute of Technology)
- Antoine Girard (University of Grenoble)
- Luonan Chen (Chinese Academy of Sciences)
- Kazuyuki Aihara (The University of Tokyo)

Thank you for your attention!