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Abstract— In this paper, we develop a dissipativity-preserving
model reduction method based on a generalized singular
perturbation approximation. This model reduction framework
can deal with not only standard singular perturbation approx-
imation but also projection-based model reduction as a special
case. To develop such a model reduction method, we investigate
a condition under which system dissipativity is appropriately
preserved through the approximation. Moreover, deriving a
novel factorization of the error system in the Laplace domain,
we derive an a priori error bound in terms of the H2-norm. The
efficiency of the model reduction is shown through an example
of interconnected second-order systems.

I. I NTRODUCTION

Along with the recent dramatic developments in engi-
neering, the architecture of systems that interest the control
community has tended to become more complex and larger
in scale [1]. In view of this, it is crucial to develop approx-
imation methods that enables us to reduce the complexity
of systems. Additionally, it is desirable that some particular
structures of systems such as stability, dissipativity, and
positivity are preserved through out the approximation. It is
expected that this kind of structure-preserving model reduc-
tion has the potential to significantly simplify the analysis
and synthesis of large-scale complex systems.

Against such a background, this paper addresses a model
reduction problem that is formulated based on a generalized
singular perturbation approximation. It is found that the
model reduction framework based on a generalized sin-
gular perturbation approximation can deal with not only
the standard singular perturbation approximation but also
the projection-based model reduction as a special case; see
Section II for details. In this sense, this model reduction
provides a unified framework for many model reduction
methods.

In addition, we consider the preservation of system dissi-
pativity. To this end, we first derive a tractable representation
of reduced models, which provides a clear insight into
achieving dissipativity preservation. In addition, deriving
a novel factorization of the error system in the Laplace
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domain, we show that our generalized singular perturbation
approximation admits an a priori error bound in terms of the
H2-norm.

To clarify our contribution, some references for structure-
preserving model reduction are in order. For example, [2] and
[3] each address a model reduction problem while preserving
a particular system structure such as the Lagrangian structure
or the second-order structure. In particular, [4] and [5] de-
velop model reduction methods with passivity preservation.
However, these model reduction problems are not formulated
on the premise of dissipativity, which corresponds to a
generalized notion of passivity. Moreover, no global error
bound has been derived. It should be finally noted that
this paper provides a generalization of the results derived
in [6] by the authors, where a passivity-preserving model
reduction method based on the standard singular perturbation
approximation has been developed.

This paper is organized as follows. First, in Section II, we
formulate a dissipativity-preserving model reduction prob-
lem based on a notion of generalized singular perturbation
approximations. It will be found that the generalized singu-
lar perturbation approximation can deal with not only the
standard singular perturbation approximation but also the
projection-based model reduction as a special case. Next,
in Section III, we describe the main results of this paper,
which include the derivation of a condition for dissipativity
preservation and an a priori error bound in terms of theH2-
norm. Then, in Section III-C, we demonstrate the efficiency
of our model reduction method through an example of
mass-spring-damper systems. Finally, concluding remarks
are provided in Section IV.
Notation The following notation is to be used:R: set of
real numbers;In: unit matrix of sizen×n; M ≺ On (M ≼
On): negative (semi)definiteness of a symmetric matrixM ∈
Rn×n; M ≻ On (M ≽ On): positive (semi)definiteness of a
symmetric matrixM ∈ Rn×n; im(M): range space spanned
by the column vectors of a matrixM ; tr(M): trace of a
matrixM ; diag(M1, . . . ,Mn): block diagonal matrix having
matricesM1, . . . ,Mn on its block diagonal.

The H∞-norm of a stable proper transfer matrixG and
theH2-norm of a stable strictly proper transfer matrixG are
respectively defined by

∥G(s)∥H∞ := sup
ω∈R

∥G(jω)∥,

∥G(s)∥H2 :=

(
1

2π

∫ ∞

−∞
tr(G(jω)GT(−jω))dω

) 1
2

where∥ · ∥ denotes the induced2-norm.



II. PROBLEM FORMULATION

A. Generalized Singular Perturbation Approximation

We mathematically formulate a model reduction frame-
work based on a notion of the generalized singular perturba-
tion approximation [7], [8]. Let us consider a linear system

Σ :

{
ẋ = Ax+Bu
y = Cx+Du

(1)

with A ∈ Rn×n, B ∈ Rn×mu , C ∈ Rmy×n and D ∈
Rmy×mu . In much literature on the singular perturbation
theory, it is assumed that system (1) is intrinsically decoupled
into several subsystems having different time scales; see
[9], [10]. Contrastingly, such an assumption is not made
in this paper. Instead, by finding an appropriate coordinate
transformation, we decouple system (1) into two subsystems
in a general manner. Namely, we denote the set of projection
matrices by

P n̂×n := {P ∈ Rn̂×n : PPT = In̂, n̂ ≤ n}, (2)

and we perform the coordinate transformation ofΣ with a
unitary matrix[PT, P

T
]T ∈ Rn×n with P ∈ P n̂×n andP ∈

P(n−n̂)×n. Then, we obtain

Σ̃ :


[
ξ̇
η̇

]
=

[
PAPT PAP

T

PAPT PAP
T

] [
ξ
η

]
+

[
PB
PB

]
u

y =
[
CPT CP

T
] [ ξ

η

]
+Du.

(3)

To reduce the dimension of̃Σ, we impose analgebraic
constrainton the trajectory ofη. More specifically, confining
the dynamics ofη by η̇ ≡ ση, we obtain

ση̂ = PAPTξ̂ + PAP
T
η̂ + PBu, (4)

whereη and ξ are replaced with their approximantŝη and
ξ̂, respectively. As long asσIn−n̂ − PAP

T
is nonsingular,

the approximant̂η in (4) is obtained as

η̂ = (σIn−n̂ − PAP
T
)−1PAPTξ̂

+(σIn−n̂ − PAP
T
)−1PBu. (5)

Substituting (5) into the equation with respect toξ̇, we have
the generalized singular perturbation model

Σ̂σ :

{
˙̂
ξ = Âξ̂ + B̂u

ŷ = Ĉξ̂ + D̂u
(6)

where

Â := PAPT + PAΠAPT ∈ Rn̂×n̂

B̂ := PB + PAΠB ∈ Rn̂×mu (7)

Ĉ := CPT + CΠAPT ∈ Rmy×n̂

D̂ := D + CΠB ∈ Rmy×mu

and
Π := P

T
(σIn−n̂ − PAP

T
)−1P ∈ Rn×n. (8)

Note that thisΠ does not depend on the basis selection of
the projectionP . This is because

Π = P
T
HT(σIn−n̂ −HPAP

T
HT)−1HP

holds for any unitary matrixH ∈ R(n−n̂)×(n−n̂). This
implies that, for a fixed constantσ ∈ R, the generalized
singular perturbation model̂Σσ in (6) depends only on the
choice ofP ∈ P n̂×n.

B. Dissipativity-Preserving Model Reduction Problem

To formulate a dissipativity-preserving model reduction
problem, we begin with the following standard definition of
(strict) dissipativity [11], [12].

Definition 1: A linear systemΣ in (1) is said to beV -
dissipative with respect to

Q = QT ∈ R(mu+my)×(mu+my)

if there existsV = V T ≻ On such that

FQ(A,B,C,D;V ) ≺ On+mu (9)

holds for

FQ(A,B,C,D;V ) := (10)[
ATV + V A V B

BTV 0

]
−
[
C D
0 Imu

]T
Q

[
C D
0 Imu

]
.

In linear systems theory, the inequality (9) is called a
dissipation inequality, and the quadratic functions

fV (x) := xTV x (11)

and

sQ(y, u) :=
[
yT uT

]
Q

[
y
u

]
, Q =

[
Qy,y Qy,u

Qu,y Qu,u

]
(12)

are calledstorage functionsand supply functions, respec-
tively.

In the rest of this paper, we denote the transfer matrix of
Σ by

G(s) := C(sIn −A)−1B +D, (13)

and the generalized singular perturbation approximant ofG
associated withP ∈ P n̂×n by

Ĝσ(s;P ) := Ĉ(sIn̂ − Â)−1B̂ + D̂, (14)

whereÂ, B̂, Ĉ andD̂ are defined as in (7). The aim of this
paper is to provide a solution to the following dissipativity-
preserving model reduction problem.

Problem: Consider a linear systemΣ in (1), and suppose
that it is V -dissipative with respect toQ. Given a constant
δ ≥ 0, find a generalized singular perturbation modelΣ̂σ

in (6) such that it isV̂ -dissipative with respect toQ and
satisfies

∥G(s)− Ĝσ(s;P )∥H2 ≤ δ (15)

whereG andĜσ are defined as in (13) and (14), respectively.



III. M AIN RESULTS

A. Dissipativity Preservation

First of all, we derive a tractable condition under which
the generalized singular perturbation approximation appro-
priately preserves system dissipativity in Definition 1. The
following fact will be useful for arguments below.

Lemma 1:Let a linear systemΣ in (1) be given, and
suppose that it isV -dissipative with respect toQ. Consider
a Cholesky factorV 1

2
of V such thatV = V T

1
2

V 1
2
. Then

FQ(V 1
2
AV −1

1
2

, V 1
2
B,CV −1

1
2

, D; In) ≺ On+mu (16)

holds.

Proof: It is found thatFQ(A,B,C,D;V ) in (10) is
rewritten as

Ṽ TFQ(V 1
2
AV −1

1
2

, V 1
2
B,CV −1

1
2

, D; In)Ṽ

whereṼ := diag(V 1
2
, Imu). Hence, the claim follows.

This lemma shows that anyV -dissipative system can be
transformed to a system that isIn-dissipative with respect to
the same supply function. Owing to this fact, without loss
of generality, we can assume that any dissipative system is
In-dissipative, i.e., it admits the quadratic functionxTx as
its storage function.

In projection-based model reduction methods, such a
particular realization is actually useful for achieving dis-
sipativity preservation. This is because, for anyP ∈
P n̂×n, FQ(PAPT, PB,CPT, D; In̂) is negative definite if
and only if

P̃FQ(A,B,C,D; In)P̃
T, P̃ := diag(P, Imu)

is negative definite. This implies that the reduced model is
In̂-dissipative with respect toQ whenever the original system
is In-dissipative with respect toQ. However, due to the
complicated form of̂Σσ in (6), the same conclusion for the
generalized singular perturbation approximation seems non-
trivial. In view of this, we derive a tractable representation of
Â, which provides a clear insight into achieving dissipativity
preservation.

Lemma 2:For anyA ∈ Rn×n, P ∈ P n̂×n and σ ∈ R,
the system matrix̂A ∈ Rn̂×n̂ in (7) admits the representation

Â = (P + PAΠ)A(P + PAΠ)T − σPAΠ(PAΠ)T, (17)

whereΠ ∈ Rn×n is defined as in (8). Moreover,P + PAΠ
has full row rank.

Proof: First, we prove thatP+PAΠ has full row rank,
namely

rank(P + PAΠ) = n̂ (18)

holds. Note that

rank((P + PAΠ)PTP ) = rank(P ) = n̂. (19)

holds. Here, if we assumerank(P + PAΠ) < n̂, then

rank((P + PAΠ)PTP )

≤ min(rank(P + PAΠ), rank(PTP )) < n̂.

This contradicts (19), and consequently (18) follows.
Next, we prove (17). We first prove that

ÂP = (P + PAΠ)A− σPAΠP
T
P (20)

holds. To this end, it suffices to show that

∆ := ÂP − (P + PAΠ)A+ σPAΠP
T
P = 0.

Using
Π(σIn −A)P

T
= P

T
, (21)

we obtain

∆ = PA{(In +ΠA)PTP − (In +ΠA)}+ σPAΠP
T
P

= −PA(In +ΠA)P
T
P + σPAΠP

T
P

= −PAP
T
P − PAΠAP

T
P + σPAΠP

T
P

= −PAP
T
P + PAΠ(σIn −A)P

T
P

= 0.

Hence, (20) follows.
Multiplying (20) by PT from the right side, we obtain

Â = (P + PAΠ)APT

= (P + PAΠ)A(P + PAΠ)T− (P + PAΠ)A(PAΠ)T.

Furthermore, noting that (21) andΠ = ΠP
T
P hold, we

obtain

σPAΠ(PAΠ)T − (P + PAΠ)A(PAΠ)T = 0

which implies (P + PAΠ)A(PAΠ)T = σPAΠ(PAΠ)T.
Thus, (17) follows.

This lemma shows that̂A in Σ̂σ admits aprojection-like
factorization as in (17). Based on this fact, we can derive the
following result on dissipativity preservation.

Theorem 1:Let a linear systemΣ in (1) be given, and
suppose that it isIn-dissipative with respect toQ. If σ ≥ 0
andP ∈ P n̂×n satisfies

im(CT) ⊆ im(PT), (22)

then the generalized singular perturbation modelΣ̂σ in (6)
is In̂-dissipative with respect toQ.

Proof: Owing to (22), it follows thatĈ = C(P +
PAΠ)T andD̂ = D. Noting thatB̂ = (P +PAΠ)B holds,
we can verify thatFQ(Â, B̂, Ĉ, D̂; In̂) is rewritten as

P̃FQ(A,B,C,D; In)P̃
T − diag(2σPAΠ(PAΠ)T, 0)

whereP̃ = diag(P + PAΠ, Imu). Here

P̃FQ(A,B,C,D; In)P̃
T

is negative definite while

−diag(2σPAΠ(PAΠ)T, 0)

is negative semidefinite owing to the assumption ofσ ≥ 0.
Thus, the claim follows.

This theorem shows that if the original system isIn-
dissipativeΣ with respect to a supply function, then the



generalized singular perturbation modelΣ̂σ is In̂-dissipative
with respect to the same supply function as long asσ ≥ 0
and (22) hold. Note that (22) can easily be satisfied by adding
the basis ofim(CT) to im(PT).

B. Approximation Error Analysis

In this subsection, we analyze the approximation error
caused by the generalized singular perturbation approxima-
tion. In literature on the standard singular perturbation theory,
most of error analyses are developed in the time domain by
using the asymptotic analysis [10], [13], or based on the
premise of the balanced realization [14], [8]. In contrast to
this, we develop error analysis in the Laplace domain without
relying on the balanced realization. First, we derive a novel
representation of the error system as shown in the following
theorem.

Theorem 2:Given a transfer matrixG in (13) andσ ∈ R,
define the generalized singular perturbation approximantĜσ

in (14) associated withP ∈ P n̂×n. Then

G(s)− Ĝσ(s;P ) (23)

=

{
Ξ̂σ(s;P )P

T
PXσ(s)

(Ξ̂σ(s;P )A+ C)P
T
Pσ−1Xσ(s), if σ ̸= 0.

holds, where

Ξ̂σ(s;P ) := Ĉ(sIn̂ − Â)−1(P + PAΠ) + CΠ

Xσ(s) := (σIn −A)(sIn −A)−1B −B (24)

with Â and Ĉ are defined as in (7).

Proof: Denote the error system by

G(s)− Ĝσ(s;P ) = Ce(sIn+n̂ −Ae)
−1Be +De

whereAe = Diag(Â, A), Be = [B̂T, BT]T, Ce = [−Ĉ, C]
andDe = −D̂+D. Considering the similarity transformation
of the error system with

T =

[
In̂ −P
0 In

]
, T−1 =

[
In̂ P
0 In

]
,

we have

TAeT
−1 =

[
Â ÂP − PA
0 A

]
, TBe =

[
PAΠP

T
PB

B

]
CeT

−1 =
[
−Ĉ −ĈP + C

]
, De = −CΠB,

(25)
whereI − PTP = P

T
P is used. Using (20), we have

ÂP − PA = −PAΠP
T
P (σIn −A).

Furthermore, using (21), we obtain

−ĈP + C = CΠ(σIn −A).

Thus, the block structure of (25) implies that the error system
is given by the first one in (23). In addition

ΠP
T
= σ−1(P

T
+ΠAP

T
)

follows from (21) if σ ̸= 0. Substituting this into (23), we
obtain the second one in (23).

The error system factorization shown in Theorem 2, which
can be applied even to unstable systems, provides a qualita-
tive insight on error analysis. That is, from thecascadedform
of (23), we expect that the resultant approximation error will
be small if the norm ofPXσ is sufficiently small, and the
norm of Ξ̂σP

T
or (Ξ̂σA+C)P

T
is bounded. Furthermore, it

is worth noting that̂Ξσ in (24) coincides with the generalized
singular perturbation approximant of

Ξ(s) = C(sIn −A)−1 (26)

associated withP ∈ P n̂×n.
Now, we are ready to state a main result of this section.

Utilizing Theorem 2 in conjunction with Theorem 1, we
establish the following theorem that gives a solution to the
structure-preserving model reduction problem in Section II
as follows.

Theorem 3:Let a linear systemΣ in (1) be given, and
suppose that it isIn-dissipative with respect toQ. Assume
that Qy,y ≼ Omy holds for (12). Givenσ ≥ 0, let γ > 0
such that

On ≻
{
A+AT + γ−1(In + CTC), if σ = 0

A+AT + γ−1(AAT + CTC), otherwise.
(27)

Furthermore, letW = WT ≽ On such that

AW +WAT +BBT = 0 (28)

holds. If P ∈ P n̂×n satisfies

im([B,CT]) ⊆ im(PT) (29)

ϵ ≥

{√
tr(Φσ)− tr(PΦσPT), if σ = 0

σ−1
√

tr(Φσ)− tr(PΦσPT), otherwise.
(30)

where

Φσ := (σIn −A)W(σIn −A)T ∈ Rn×n, (31)

then the generalized singular perturbation modelΣ̂σ in (14)
is In̂-dissipative with respect toQ and satisfies

G(σ) = Ĝσ(σ;P ), ∥G(s)− Ĝσ(s;P )∥H2 ≤ γϵ (32)

whereG andĜσ are defined as in (13) and (14), respectively.

Proof: If Σ is In-dissipativeΣ with respect toQ,
then Σ̂σ is In̂-dissipative with respect toQ, as shown in
Theorem 1. Note thatΣ and Σ̂σ are both stable because
they areIn- and In̂-dissipative with respect toQ satisfying
Qy,y ≼ Omy .

Next we prove (32). Note thatCΠ = 0 follows from (29).
From Theorem 2, we have

∥G(s)− Ĝσ(s;P )∥H2

≤

{
∥Ξ̂σP

T∥H∞∥PXσ∥H2 , if σ = 0

∥(Ξ̂σA+ C)P
T∥H∞∥Pσ−1Xσ∥H2 , otherwise

where Ξ̂σ and Xσ are defined as in (24). Note that (29)
implies that the feedthrough term ofPXσ is equal to zero.
Thus, from (30), we can ensure that∥PXσ∥H2

≤ ϵ if σ = 0



and∥Pσ−1Xσ∥H2 ≤ ϵ otherwise. In what follows, we prove
that

γ >

{
∥Ξ̂σ(s;P )P

T∥H∞ , if σ = 0

∥(Ξ̂σ(s;P )A+ C)P
T∥H∞ , otherwise

(33)

follows from (29) and (27).
First, we consider the case ifσ = 0. Note that there always

exists someγ > 0 such that (27) becauseA + AT ≺ On

holds. Here, owing to (29), the feedthrough term ofΞ̂σ is
equal to zero. Thus, from the bounded real lemma, it follows
that ∥Ξ̂σ∥H∞ < γ holds if there existŝV = V̂ T ≻ On̂ such
that

V̂ Â+ ÂTV̂ (34)

+γ−1
{
V̂ (P + PAΠ)(P + PAΠ)TV̂ + ĈTĈ

}
≺ On̂.

By the fact thatĈ = CPT = C(P + PAΠ)T holds, the
inequality (34) with the solution of̂V = In̂ is rewritten as

(P + PAΠ){A+AT + γ−1(In + CTC)}(P + PAΠ)T

−2σPAΠ(PAΠ)T ≺ On̂,

whose negative semidefiniteness is ensured by (27) and
−2PAΠ(PAΠ)T ≼ On̂. Hence

∥Ξ̂σ(s)P
T∥H∞ ≤ ∥Ξ̂σ(s)∥H∞ < γ (35)

follows. From an argument similar to this, we can verify that
(29) and (27) ensure

∥(Ξ̂σ(s;P )A+ C)P
T∥H∞ ≤ ∥Ξ̂σ(s;P )A∥H∞ < γ (36)

if σ ̸= 0. Finally,G(σ) = Ĝσ(σ;P ) is proven byXσ(σ) = 0
in (23).

Theorem 3 shows in (32) that the generalized singular
perturbation approximation admits an a priori error bound.
Note that the value ofγ in (32) corresponds to an upper
bound for the gain of the state-to-output mapping of the
generalized singular perturbation model.

Furthermore, to findP ∈ P n̂×n such that (22) and (29)
hold for a prescribedϵ, we can use the following procedure:
First, we find the set{(λi, vi)}i∈{1,...,n} of all eigenpairs of
Φσ in (31), where it is assumed without loss of generality
thatλi ≥ λi+1 and∥vi∥ = 1. Next, we findm ∈ {1, . . . , n}
such that

ϵ2 ≥

{
λm+1 + · · ·+ λn, if σ = 0

σ−1(λm+1 + · · ·+ λn), otherwise
(37)

and constructVm = [v1, . . . , vm] ∈ Pn×m. Finally, by the
Gram-Schmidt process, we deriveP ∈ P n̂×n such that
im(PT) = im([Vm, B, CT]).

It is worth noting that in the generalized singular per-
turbation approximation the resultant approximation error is
related to the sum of neglected eigenvalues ofΦσ as shown in
(37). The major significance of Theorem 3 is the theoretical
revelation thatϵ (i.e., the threshold of neglected eigenvalues
of Φσ) can be used as a design parameter to regulate the
approximating quality of resultant approximate models.

Fig. 1. Depiction of Mass-Spring-Damper System.

C. Numerical Example

In this subsection, we demonstrate the efficiency of our
generalized singular perturbation approximation through a
numerical example. Let us consider the following mass-
spring-damper system{

Mq̈ +Rq̇ +Kq = Fu
y = Hq

(38)

whereM ≻ Oν denotes a mass matrix,R ≻ Oν denotes
a damper matrix,K ≻ Oν denotes a spring stiffness
matrix, F ∈ Rν×mw denotes a matrix describing actuator
allocation, andH ∈ Rmz×ν denotes a matrix describing
sensor allocation. This second-order system is often used as
a primary model of flexible mechanical systems in vibration
suppression control [15] and the rotor dynamics in power
system stabilization [16].

Let x0 := [qT, q̇T]T ∈ R2ν be the state variable of this
system. Then, we have the2ν-dimensional systemΣ in (1),
with

A =

[
0 Iν

−M−1K −M−1R

]
B =

[
0

M−1F

]
, C =

[
H 0

]
, D = 0.

Let us consider a case in whichν = 50 mass components
are coupled. Here, we specify the coefficient matrices in (38)
asM = diag(1, . . . , 50), R = 0.2× I50 and

K =


2 −1

−1 2
. . .

. . .
. . . −1
−1 2

 , F = HT =


1
0
...
0

 .

This system is depicted in Fig. 1, where we use the notation
q = [q1, . . . , q50]

T. Furthermore, the Bode gain diagram of
this system is plotted in Fig. 2 with the thin solid line. From
this figure, we can see that the system has a number of
resonance frequencies.

By applying Theorem 3, we approximate this system while
preserving system dissipativity. More specifically, we aim to
preserveV -dissipativity with respect to

Q =

[
−1 0
0 γ2

]
, γ = ∥G(s)∥H∞ + 0.01 = 2.81.

This dissipativity preservation implies that the generalized
singular perturbation approximant satisfies

sup
ω∈R

|Ĝσ(jω)| = ∥Ĝσ(s)∥H∞ < γ.

By varying the valueϵ in (37), which represents the thresh-
old of neglected eigenvalues ofΦσ in (31), we construct
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generalized singular perturbation models. For several values
of σ ≥ 0, Fig. 3 shows the resultant approximation error
versus the dimension of each approximate model. From this
figure, we can see that the approximation error decreases as
the dimension of each model increases. Since the dimension
of approximate models is a decreasing function ofϵ, this
implies that the quality of approximate models can be
appropriately captured by the neglected eigenvalues ofΦσ.
Furthermore, we notice that the approximate model with
σ = 0.1 gives the least approximation error among the values
of σ that we have tried.

Finally, the Bode gain diagram of each30-dimensional
approximate model is over-plotted in Fig. 2. From this
figure, we can see that all approximate models appropriately
capture the peak gain of the original system while the models
with larger value ofσ (i.e., σ = 10, ∞) tend to cause
larger approximation error in the low-frequency range. This
trend can be recalled by the fact that the standard singular
perturbation approximation (i.e.,σ = 0) exactly preserves
the zero frequency gain, while the projection-based model
reduction (i.e.,σ = ∞) preserves the infinite frequency
gain. It is found that the approximate model withσ = 0.1
most appropriately captures overall frequency properties of
the original system.

IV. CONCLUSION

In this paper, based on a notion of generalized singular
perturbation approximation, we have developed a model
reduction method that preserves system dissipativity. It has
been found that the generalized singular perturbation approx-
imation can deal with not only the standard singular per-
turbation approximation but also the projection-based model
reduction as a special case. In this sense, this model reduction
provides a unified framework for major model reduction
methods. Finally, the efficiency of the model reduction has
been shown through an example of second-order systems.
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