Clustering-based State Aggregation of Dynamical Networks

Takayuki Ishizaki

Ph.D. from Tokyo Institute of Technology (March 2012)

Research Fellow of the Japan Society for the Promotion of Science

From Tokyo to Stockholm

<u>I am (was?) tennis man</u>

Model Reduction via Projection

Given stable system

$$\underbrace{u} \underbrace{\Sigma} \underbrace{y} \\ final for the equation of the equation of$$

Find

Stable reduced model

$$Px = \hat{x}, \ P \in \mathbb{R}^{\hat{n} \times n} \qquad \checkmark PP^{\dagger} = I_{\hat{r}}$$
$$(A, B, C) \longrightarrow (\hat{A}, \hat{B}, \hat{C}) = (PAP^{\dagger}, PB, CP^{\dagger})$$
Find P such that $\|\Sigma - \hat{\Sigma}\|$ is small enough

$$\checkmark \begin{bmatrix} \mathscr{L}[\cdot] : \text{Laplace transform} \\ \|\cdot\|_F : \text{Frobenius norm} \\ \text{Stable system } \Sigma : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad \text{Solution } y(t) = \int_0^t h(t - \tau)u(\tau)d\tau \\ \text{Impulse response } h(t) := Ce^{At}B \end{cases}$$

Transfer function $H(s) := \mathscr{L}[h] = C(sI_n - A)^{-1}B$

• Clustering-based State Aggregation in terms of \mathcal{H}_{∞} -norm

- How to reduce systems while preserving <u>network topology</u>?
- Use of positive tri-diagonalization
- Application to <u>diffusion process over complex network</u>

- \mathcal{H}_2 -aggregation of Positive Networks
 - Preservation of network topology as well as <u>positivity</u>
 - Use of <u>controllability gramian</u>
 - Application to <u>Chemical Master Equation</u>

[Definition] **Bidirectional Network** (A, b)

$$\dot{x} = Ax + bu$$
 with $A = \{a_{i,j}\} \in \mathbb{R}^{n \times n}$ and $b = \{b_i\} \in \mathbb{R}^n$

is said to be *bidirectional network* (A, b) if A is symmetric and stable.

Including reaction-diffusion systems: $\dot{x}_i = -r_i x_i + \sum_{j=1, j \neq i}^n a_{i,j} (x_j - x_i) + b_i u$

 r_i : reaction of x_i $a_{i,j} = a_{j,i}$: diffusion between x_i and x_j

Traditional Model Reduction

- Traditional model reduction methods
 - Balanced truncation, Krylov projection, Hankel norm approximation
 - No specific structure in transformation matrix P

Drawback: Network structure (spatial information) is destroyed

<u>Need to impose suitable sparse structure on P</u>

Clustering-based State Aggregation

- Aggregation of <u>disjoint sets of states</u> (clusters) $\{x_{[1]}, \ldots, x_{[L]}\}$
 - <u>Block-diagonally structured</u> aggregation matrix $P = Diag(p_{[1]}, \dots, p_{[L]})$
 - Interconnection topology among clusters is preserved ③

✓ For simplicity, <u>Aggregation = Averaging</u>: $\mathbf{1}^{\mathsf{T}} = [1, ..., 1]$

Key Observation to Construct Reducible Clusters

Positive Tri-diagonalization

[Lemma] For every bidirectional network (A, b), there exists a unitary $H \in \mathbb{R}^{n \times n}$ such that $(\tilde{A}, \tilde{b}) = (H^{\mathsf{T}}AH, H^{\mathsf{T}}b)$ has the structure below.

Reducibility Characterization

Bidirectional network (A, b) \mathcal{U} \tilde{x}_4 reducible reducible

 (\tilde{A}, \tilde{b}) : positive tri-diagonal realization H: transformation matrix

Index matrix

$$\Phi := H \operatorname{diag}(-\tilde{A}^{-1}\tilde{b})$$

 $-\tilde{A}^{-1}\tilde{b}$: DC-gain \Leftrightarrow Maximal gain

due to positivity

$$\Phi = \begin{bmatrix} \frac{1}{0} & 0 & 0 & 0 & 0 \\ 0 & 1.20 & -0.20 & 0 & 0 \\ 0 & 1.20 & -0.20 & 0 & 0 \\ \hline 0 & 0.60 & 0.40 & 0 & 0 \\ \hline 0 & 0.60 & 0.40 & 0 & 0 \end{bmatrix} \end{bmatrix} \text{ identical}$$

Cluster reducibility is characterized by rows of Φ

Reducible Cluster Aggregation

Reducibility: $\forall i, j \in \mathcal{I}_{[l]}$ s.t. $g_i(s) = g_j(s)$ $\Phi = H \operatorname{diag}(-\tilde{A}^{-1}\tilde{b})$

[Theorem] A cluster $\mathcal{I}_{[l]}$ is reducible iff $\forall i, j \in \mathcal{I}_{[l]}$ s.t. $\operatorname{row}_i[\Phi] = \operatorname{row}_j[\Phi]$. Furthermore, if all clusters are reducible, then $g(s) = \hat{g}(s)$ holds.

Aggregated model (PAP^{T}, Pb) $\hat{g}(s) = P^{\mathsf{T}} (sI_L - PAP^{\mathsf{T}})^{-1} Pb$ with $P = \text{Diag}(p_{[1]}, \dots, p_{[L]}) \in \mathbb{R}^{L \times n}$

Dynamical network (A, b) $g(s) = (sI_n - A)^{-1} b$

Relaxation to $\|\operatorname{row}_{i}[\Phi] - \operatorname{row}_{j}[\Phi]\| \leq \theta$??

[Definition] θ -reducible Cluster $\checkmark \|v\|_{l_{\infty}} = \|v^{\mathsf{T}}\|_{l_{1}}$ for row vector v

A cluster $\mathcal{I}_{[l]}$ is said to be <u> θ -reducible</u> if

$$\forall j \in \mathcal{I}_{[l]}, \ \exists i \in \mathcal{I}_{[l]} \ \text{s.t.} \ \|\operatorname{row}_{i}[\Phi] - \operatorname{row}_{j}[\Phi]\|_{l_{\infty}} \leq \theta.$$

 $\underline{\theta}$: coarseness parameter

[Theorem] If all clusters are θ -reducible, then $\|g(s) - \hat{g}(s)\|_{\mathcal{H}_{\infty}} \leq \sqrt{\alpha} \|(\mathsf{P}A\mathsf{P}^{\mathsf{T}})^{-1}\mathsf{P}A\|\theta$ holds where $\alpha := \sum_{l=1}^{L} |\mathcal{I}_{[l]}|(|\mathcal{I}_{[l]}| - 1).$ linear dependence on θ

<u>Preservation</u>: Stability and Interconnection topology among clusters In addition, $\hat{x}_{[l]}$ represents <u>average of original state</u> $x_{[l]}$

- Give $\theta \in \mathbb{R}_+$, Initialize $\{\mathcal{I}_{[l]}\}_{l \in \mathbb{L}} = \emptyset$, $\mathbb{L} = \emptyset$, l = 0While $\{\mathcal{I}_{[l]}\}_{l \in \mathbb{L}} \neq \{1, \dots, n\}$ • $l++, \mathbb{L} \leftarrow \{\mathbb{L}, l\}$

 - Choose $i \in \{1, \dots, n\} \setminus \{\mathcal{I}_{[l]}\}_{l \in \mathbb{L}}$, Set $\mathcal{I}_{[l]} = \{i\}$

• For all
$$j \in \{1, \dots, n\} \setminus \{\mathcal{I}_{[l]}\}_{l \in \mathbb{L}}$$
,
if (i, j) satisfies $(*)$, then $\mathcal{I}_{[l]} \leftarrow \{\mathcal{I}_{[l]}, j\}$

 θ -reducibility : (*)

 $\|\operatorname{row}_{i}[\Phi] - \operatorname{row}_{j}[\Phi]\|_{l_{\infty}} \leq \theta$ where $\Phi = H\operatorname{diag}(-\tilde{A}^{-1}\tilde{b})$

Cluster set to be obtained is not necessarily unique

Numerical Example

Diffusion process over the Holme-Kim model (3000 th dim.)

• $||g(s) - \hat{g}(s)||_{\mathcal{H}_{\infty}} \le 0.16$ (less than 0.5% error) if $\theta = 1.82$

- Clustering-based State Aggregation in terms of \mathcal{H}_{∞} -norm
 - How to reduce systems while preserving <u>network topology</u>?
 - ► Use of positive tri-diagonalization
 - Application to <u>diffusion process over complex network</u>

- \mathcal{H}_2 -aggregation of Positive Networks
 - Preservation of network topology as well as <u>positivity</u>
 - Use of <u>controllability gramian</u>
 - Application to <u>Chemical Master Equation</u>

[Definition] Positive Network (A, b)

 $\dot{x} = Ax + bu$ with $A = \{a_{i,j}\} \in \mathbb{R}^{n \times n}$ and $b = \{b_i\} \in \mathbb{R}^n$ is said to be <u>positive network</u> (A, b) if A is Metzler and (marginally) stable, and $b \in \mathbb{R}^n_+$.

e.g., Heat diffusion systems, Electric circuit systems, Markovian processes

Model reduction while preserving positivity, stability and network

Reducibility Characterization (H₂-case)

Given (A, b) with stable A

Controllability gramian

$$\Phi := \int_0^\infty e^{At} b \, (e^{At} b)^\mathsf{T} dt$$

✓ Lyapunov equation $A\Phi + \Phi A^{\mathsf{T}} + bb^{\mathsf{T}} = 0$

Cholesky factorization $\Phi_c \Phi_c^{\mathsf{T}} = \Phi$

Cluster reducibility is characterized by rows of Φ_c

[Definition] θ -reducible Cluster $\checkmark \Phi_c \Phi_c^{\mathsf{T}} = \int_0^\infty e^{At} b (e^{At} b)^{\mathsf{T}} dt$ The cluster $\mathcal{I}_{[l]}$ is said to be $\underline{\theta}$ -weakly reducible if $\forall j \in \mathcal{I}_{[l]}, \ \exists i \in \mathcal{I}_{[l]} \text{ s.t. } \|\operatorname{row}_i[\Phi_c] - \operatorname{row}_j[\Phi_c]\| \leq \theta.$ $\underline{\theta}$: coarseness parameter

[Theorem] If all clusters are θ -weakly reducible, then $\|g(s) - \hat{g}(s)\|_{\mathcal{H}_2} \leq \sqrt{\alpha} \|(sI_L - PAP^{\mathsf{T}})^{-1}PA\|_{\mathcal{H}_{\infty}} \theta$ holds where $\alpha := \sum_{l=1}^{L} |\mathcal{I}_{[l]}|(|\mathcal{I}_{[l]}| - 1).$ linearly bounded by θ

<u>Preservation</u>: Stability, Positivity, Interconnection topology among clusters

Generalization to Marginally Stable Positive Networks

Gramian is **not defined** if A has zero-eigenvalue Θ

Projected gramian
$$\Phi = \int_0^\infty W^{\mathsf{T}} e^{WAW^{\mathsf{T}}t} Wb \left(W^{\mathsf{T}} e^{WAW^{\mathsf{T}}t} Wb \right)^{\mathsf{T}} dt$$

where $W \in \mathbb{R}^{(n-1) \times n}$ is orthogonal complement of v_l such that $v_l^{\mathsf{T}} A = 0$.

Controllability gramian of stable projected system (WAW^T, Wb)
Unique positive semi-definite matrix for (A, b)

Application to
Chemical Master Equation (CME)Michaelis-Menten system
 $S_1 + S_2 \stackrel{c_1}{\rightleftharpoons} S_3$
 c_2 ex) Initial number of S_1, S_2 are both K = 2
[Realizable distributions] $S_1 + S_2 \stackrel{c_1}{\rightleftharpoons} S_3$
 c_2 $S_3 \stackrel{c_3}{\rightarrow} S_4 + S_2$ $S_3 \stackrel{c_3}{\rightarrow} S_4 + S_2$ Realization
probability $x_1(t)$

 c_i : reaction rate constant

State
$$x := [x_1, ..., x_n]^{\mathsf{T}}$$
 with $x_1(0) = 1$

CME expression: $\dot{x} = Ax, \ x(0) = [1, 0, ..., 0]^{\mathsf{T}}$

- Continuous-time Markovian process
 - off-diagonal entries of A are non-negative
 - column sums of A are zero $\Leftrightarrow \sum_{i=1}^{n} x_i(t) \equiv 1$ (zero-eigenvalue)
 - n = (K+1)(K+2)/2 th dimensional

 $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$

 $x_4(t) \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix} \xrightarrow[x_5(t)]{\begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}}$

$$\dot{x} = Ax, \quad x(0) = [1, 0, \dots, 0]^{\mathsf{T}}$$

 $n = 10011 \text{ th order}$ if $\theta = 5 \times 10^{-5}$ $\dot{x} = \mathsf{P}A\mathsf{P}^{\mathsf{T}}\hat{x}, \quad \hat{x}(0) = \mathsf{P}x(0)$
 $L = 1077 \text{ th order}$

Relative error of $x - P^{\mathsf{T}} \hat{\mathsf{x}}$ in \mathcal{H}_2 -norm: 2.4%

- Clustering-based State Aggregation
 - positive tri-diagonalization leads to \mathcal{H}_{∞} -aggregation
 - controllability graman leads to \mathcal{H}_2 -aggregation
- Preserving interconnection topology as well as stability, positivity
- Application to diffusion process over complex networks and CMEs

Aggregated model (PAP^{T}, Pb) $\hat{g}(s) = P^{\mathsf{T}} (sI_L - PAP^{\mathsf{T}})^{-1} Pb$ with $P = \text{Diag}(p_{[1]}, \dots, p_{[L]}) \in \mathbb{R}^{L \times n}$

Dynamical network (A, b) $g(s) = (sI_n - A)^{-1} b$