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Abstract: In this paper, we study a network clustering problem for SISO linear dynamical
networks. The proposed clustering method aggregates states which behave similarly for arbitrary
input signals. We show that such states can efficiently be found via the Reaction-Diffusion
transformation. The results give a model reduction procedure that preserves the stability and
network structure.
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1. INTRODUCTION

Dynamical systems on large-scale complex networks,
whose behaviors are determined by the interaction of a
large number of subsystems, have been widely studied
over the past decades. Examples of such dynamical net-
works include World-Wide-Web, gene regulatory networks,
spread of infection; see [Boccalettia et al. (2006); Masuda
and Konno (2010); Mesbahi and Egerstedt (2010)] for an
overview. For such dynamical networks, it is often crucial
to consider models whose state variables are grouped. In
this paper, network clustering denotes the model reduction
of such systems preserving the group structure; see Defi-
nition 3 for the precise definition. The goal of this paper
is to propose a network clustering method, which is useful
to capture coarse behavior of large-scale systems for both
analysis and synthesis.

In existing literature, the state aggregation based on sin-
gular perturbation of dynamical networks have been in-
tensively developed in [Aoki (1968); Chow and Kokotovic
(1985); Biyik and Arcak (2006)]. However, this kind of
approach cannot explicitly take account of the effect of
the external input. There are also the other structure-
preserving model reduction methods. The papers [S.Lall
et al. (2003); Li and Bai (2006)] address the reduction pre-
serving some underlying structure such as the Lagrangian
structure and the second-order structure. However, these
methods only deal with the preservation of certain block
structure in the system matrices. In addition, although
[Sandberg and Murray (2009)] discuss the reduction prob-
lem of each subsystem interconnected by a network, it
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Fig. 1. Regarding diffusion on network as one-dimensional
diffusion

requires a priori knowledge on clustering of the subsystems
([Yeung et al. (2009)] has somewhat relaxed the assump-
tion). Egerestdt in [Egerstedt (2010)] has also solved a
similar problem from the controllability and graph theory
points of view for a limited class of linear dynamical
networks.

On the other hand, this paper develops a clustering
method by focusing on the input-to-state mapping of
dynamical networks. This method does not need a pri-
ori knowledge of the partition of subsystems and ap-
proximates the input-to-state mapping of systems. In the
method, we consider clustering the sets of nodes whose
states have similar behavior for arbitrary input signals.
Such nodes are efficiently found by using the network
structure transformation called Reaction-Diffusion trans-
formation, which has been proposed in [Ishizaki et al.
(2010)] by the authors. The transformed system represents
signal transmission of external input (diffusion source)
over the network in the form of spatially one-dimensional
reaction-diffusion, as shown in Fig. 1. Thanks to the
numerical efficiency of the transformation, the network
clustering method can be applied even for large-scale dy-
namical networks.



Fig. 2. Illustration of network structure

This paper is organized as follows: In Section 2, we describe
a system to be studied and introduce some properties
of the Reaction-Diffusion transformation. In Section 3,
we solve a network clustering problem via the Reaction-
Diffusion transformation. Section 4 shows the validity of
the method by numerical examples. Section 5 concludes
this paper.

NOTATION: For a vector v and a matrix M = {mij},
the following notation is used in this paper:

R the set of real numbers
In the unit matrix of the size n× n
enk the k-th column vector of In
enk1:k2

the k1-th to k2-th columns of In
diag (M1, · · · ,Mn) the block diagonal matrix com-

posed of M1, · · · ,Mn

abs (M) the matrix formed by {|mij |}
The H∞-norm of a stable rational transfer matrix G (s) is
defined by

∥G (s)∥∞ := sup
ω∈R

σmax (G (jω)) .

Let I be the set of integers, for which |I| denotes the
cardinality of I and enI ∈ Rn×|I| denotes the matrix
whose column vectors are composed of enk for k ∈ I (in
some order of k), i.e., enI =

[
enk1

, · · · , enkm

]
∈ Rn×m for

I = {k1, · · · , km}.

2. REACTION-DIFFUSION TRANSFORMATION

In this paper, we deal with linear systems on large-scale
complex networks whose general form is given as follows:

Definition 1. The linear system

ẋ = Ax+Bu, x (0) = 0 (1)

with A = {ai,j} ∈ Rn×n and B = {bi} ∈ Rn×1 is said to be
a dynamical network (A,B) if A is stable and symmetric.

This is a generalization of undirected reaction-diffusion
systems depicted in Fig. 2:

ẋi = −rixi +
n∑

j=1,j ̸=i

ai,j (xj − xi) + biu (2)

where ri(≥ 0) denotes the intensity of the reaction (chem-
ical dissolution) of xi, and ai,j(≥ 0) denotes the intensity
of the diffusion between xi and xj . This coupled dynamics
is stable if at least one ri is strictly positive and the graph
is connected. See, e.g., [Mesbahi and Egerstedt (2010)] for
a survey on networked systems and multi-agent systems.
This reaction-diffusion structure over the network can
be represented in the following spatially one-dimensional
manner:

Fig. 3. Illustration of RD-realization

Definition 2. Let (A,B) a dynamical network in (1).
Then, unitary H is said to be a Reaction-Diffusion trans-
formation matrix if A := HAHT and B := HB are in the
form of

A =


α1 β1

β1 α2 β2

. . .
. . .

. . .
. . .

. . . βn−1

βn−1 αn

∈Rn×n, B =


β0

0
...
0

∈Rn×1

(3)
with some negative constant αi ∈ R for i ∈ {1, · · · , n} and
some non-negative constant βi ∈ R for i ∈ {0, · · · , n− 1}.
Moreover, the realization (A,B) is called a Reaction-
Diffusion realization 1 .

As shown in Theorem 1 in [Ishizaki et al. (2010)], we
can effectively construct a RD-transformation matrix H.
Moreover

i :=

{
min
i
{i : βi = 0} if

∏n−1
i=1 βi = 0,

n, otherwise
(4)

does not depend on the choice of H. Actually, the column
vectors of HTen

1:i
span the controllable sub-space. That is,

ī = n if and only if (A,B) is controllable.

In what follows, we denote

g (s) := (sIn −A)
−1

B,

{
G (s) := (sIn −A)

−1 B
Gi (s) := (eni )

T G (s) .
(5)

We introduce a low-pass property equipped with the RD-
realization.

Proposition 1. (Ishizaki et al. (2010)). Let (A,B) be the
RD-realization in (3). Then, Gi in (5) satisfies

∥Gi (s)∥∞ = Gi (0) , ∀i ∈ {1, · · · , n}. (6)

Remark 1. The RD-transformation has a mathematically
similar background of the Arnoldi algorithm in the Krylov
projection [Antoulas (2005a,b); Gugercin (2002)]. How-
ever, the Krylov projection in general does not produce a
tri-diagonal matrix with non-negative off-diagonal entries.
On the other hand, we have proposed in [Ishizaki et al.
(2010)] to make the off-diagonal entries non-negative by
using the Householder transformation. Consequently, the
non-negativity provides the uniqueness of the transforma-
tion and some preferable properties such as (6).

Example 1. Consider the simple dynamical network (A,B)
given by

A =


−7 1 2 2 1
1 −1
2 −2
2 −2
1 −1

 , B =


1
0
0
0
0

 (7)

and the state vector x := [ x1 · · · x5 ]
T
. The network

structure is depicted in Fig. 4.

Transforming (7) to the RD-realization, we have A,B and
H ∈ R5×5 as
1 The term “Reaction-Diffusion” is as necessary denoted as “RD-”.
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Fig. 4. Network structure of dynamical network

A=


−7 3.16
3.16 −1.8 0.4

0.4 −1.2 0
0 −1.2 0.4

0.4 −1.8

, B =


1
0
0
0
0



H =


1 0 0 0 0
0 0.316 0.633 0.633 0.316
0 0.633 −0.316 −0.316 0.633
0 0.633 −0.316 0.316 −0.633
0 0.316 0.633 −0.633 −0.316

 .

From the form of A and the definition of i in (4), we have
i = 3 and

HTen
1:i

=


1 0 0
0 0.316 0.633
0 0.633 −0.316
0 0.633 −0.316
0 0.316 0.633

 , (8)

whose column vectors span the controllable sub-space of
(A,B).

3. APPLICATION TO NETWORK CLUSTERING

3.1 Network Clustering based on State Aggregation

In this subsection, we outline a network clustering method
based on state aggregation. First, we define the following
notion of a network clustering:

Definition 3. Consider the dynamical network (A,B) in
(1). A family of index sets {I[l]}l∈L for L := {1, · · · , L} is
called a cluster set (its element is referred to as a cluster)
if each element is a disjoint subset of {1, · · · , n} and∪

l∈L I[l] = {1, · · · , n}. An aggregation matrix (compatible
with {I[l]}l∈L) is defined by

P := diag
(
p[1], · · · , p[L]

)
Q ∈ RL×n (9)

with p[l] ∈ R1×|I[l]| such that p[l]p
T
[l] = 1, and the

permutation matrix

Q =
[
enI[1]

· · · enI[L]

]T∈ Rn×n, enI[l]
∈ Rn×|I[l]|. (10)

Then, the aggregated model (associated with P) of the
dynamical network (A,B) in (1) is given by(

PAPT,PB
)
. (11)

In this definition, there are L clusters labeled by l ∈
L. Then, each node belongs to exactly one of them, or
equivalently, the behavior of l-th cluster is represented

by x[l] := (enI[l]
)Tx ∈ R|I[l]|. On the other hand, the

aggregated model has the same number of clusters with
the the scaler state variable x̂[l] = p[l]x[l] ∈ R. Note that

PAPT is symmetric and the aggregation matrix P clearly
satisfies PPT = IL.

Fig. 5. Illustration of network clustering based on state
aggregation

The aggregated model is constructed by applying the
Petrov-Galerkin projection defined by Π = PTP to the
original dynamical network (A,B) (see Chapter 11 in
[Antoulas (2005a)] for the detail.). In what follows, we

derive a condition under which x[l] ∈ R|I[l]| can be
recovered from x̂[l] ∈ R in a suitable sense.

Remark 2. Traditional model reduction methods such as
the balanced truncation, the Krylov projection and the
Hankel-norm approximation [Antoulas (2005a)] focus on
approximating the input-to-output mapping of systems.
As a result, the reduced model does not preserve the
spatial information of the original systems. In other words,
the network structure of the system is destroyed through
the reduction. This drawback arises from the fact that
every state in the reduced model in general contains
information of all the states. On the contrary, we propose
a model reduction based on the state aggregation of local
states. As shown in Fig. 5, the network structure (spatial
distribution) of internal states is retained through the
reduction. We refer to such state aggregation of dynamical
networks as network clustering.

Hereafter, we denote the transfer function of the aggre-
gated model by

g (s) := PT
(
sIL − PAPT

)−1
PB. (12)

Then, let us begin with the simple situation where some
of the original clusters have redundancy in the following
sense:

Definition 4. Under Definition 3, if there exists a row-

fullrank matrix q[l] ∈ R(|I[l]|−1)×|I[l]| such that

q[l]

(
enI[l]

)T

g (s) = 0, (13)

then the cluster I[l] is said to be reducible.

The following theorem characterizes the reducibility of I[l]
via RD-transformation:

Theorem 1. Consider the RD-transformation of the dy-
namical network (1). Define

Hi
[l] :=

(
en
1:i

)T
HenI[l]

∈ Ri×|I[l]| (14)

for i in (4). Then, (13) is equivalent to 2

q[l]

(
Hi

[l]

)T

= 0. (15)

Furthermore, for each l ∈ L, take

p[l] :=
p̂[l]∥∥p̂[l]∥∥ ∈ R1×|I[l]|, p̂[l] :=

(
Hi

[l]e
i
1

)T

Hi
[l]. (16)

2 We allow empty q[l].
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Then, the aggregated model associated with P in (9) is
stable and

g (s) = g (s) (17)

holds.

Proof. [Necessity of (15)] We have

q[l]

(
enI[l]

)T

g (s) = q[l]

(
enI[l]

)T

HTG (s) .

The desired result follows from the fact that Gi ≡ 0 for
i > ī, and {Gi}īi=1 are linearly independent.

[Sufficiency of (15)] Denoting(
e
|I[l]|−1

i

)T

q[l] =
[
qi1[l], · · · , q

i

|I[l]|[l]
]
∈ R1×|I[l]|

HenI[l]
=


h11[l] · · · h1|I[l]|[l]
... · · ·

...
hn1[l] · · · hn|I[l]|[l]

 ∈ Rn×|I[l]|,

the condition (15) implies

|I[l]|∑
j=1

qij[l]h
k
j[l] = 0, ∀

{
i ∈

{
1, · · · ,

∣∣I[l]∣∣− 1
}

k ∈
{
1, · · · , i

}
.

By Proposition 1, we have∥∥∥∥∥
(
e
|I[l]|−1

i

)T

q[l]

(
enI[l]

)T

g (s)

∥∥∥∥∥
∞

(18)

=

∥∥∥∥∥∥∥
n∑

k=1

|I[l]|∑
j=1

qij[l]h
k
j[l]Gk (s)

∥∥∥∥∥∥∥
∞

≤
n∑

k=1

∣∣∣∣∣∣∣
|I[l]|∑
j=1

qij[l]h
k
j[l]

∣∣∣∣∣∣∣Gk (0)

where the last term is 0 from the fact that Gi ≡ 0 for i > i.

[Proof of (17)] The stability of g (s) is trivial from the
negative definiteness of A. Note that I[l] is reducible if and
only if the (column) rank of Hi

[l] is 1. This is equivalent to

that there exist cj ∈ R such that Hi
[l]e

i
j = cjH

i
[l]e

i
1 for all

j. Here, p̂[l] ̸= 0 holds from Hi
[l]e

i
1 ̸= 0. Then, we have

Hi
[l] =

Hi
[l]e

i
1(

Hi
[l]e

i
1

)T

Hi
[l]e

i
1

p̂[l].

This implies that (p[l])
Tq[l] = 0 holds for q[l] satisfying

(15). Here, considering the coordinate transformation by

some unitary matrix [PT,P
T
]T, we have

g (s) = g (s) + Ξ (s)P (sIn −A)
−1

B (19)

Ξ (s) = PT
(
sIL − PAPT

)−1
PAP

T
+ P

T
.

Note that Ξ (s) is stable. Define P by replacing p[l] with

q[l] for each l ∈ L in (9). Then, [PT,P
T
]T is unitary, and

P (sIn −A)
−1

B = 0 by the reducibility of (13). Hence,
the result follows.

This theorem characterizes the reducibility of I[l] in (13)

via the (column) rank deficiency of Hi
[l] in (14), which

Fig. 6. Illustration of network clustering

is obtained through the RD-transformation. Note that

the rank of Hi
[l] satisfying (15) is 1. This means that

Hi
[l] is composed of column vectors having an identical

direction. Moreover, for a dynamical network with the
output mapping of C, we obtain that of the aggregated
model by CPT.

Example 2. (continuation of Example 1)

Consider the dynamical network (A,B) dealt with in
Example 1. Furthermore, consider the output mapping of

C = [0, 0, 0, 0, 1] .

By (8), we have(
en
1:i

)T
H =

[
1 0 0 0 0
0 0.316 0.633 0.633 0.316
0 0.633 −0.316 −0.316 0.633

]
.

From this matrix, we can see that the second and fifth
column vectors and the third and fourth column vectors
are respectively identical. This implies that Hi

[l] in (14) has

column rank 1 with the sets

I[1] = {1}, I[2] = {2, 5}, I[3] = {3, 4}.
Therefore, {I[l]}l∈{1,2,3} is a reducible cluster set. Then,
by Theorem 1, we have

p[1] = 1, p[2] =

[
1√
2
,
1√
2

]
, p[3] =

[
1√
2
,
1√
2

]
.

By using these vectors for (9), we obtain the aggregated
model satisfying (17) as

PAPT=

 −7
√
2 2

√
2√

2 −1

2
√
2 −2

, PB=

[
1
0
0

]
, CPT=

 0

1/
√
2

0

T

.

This network structure transformation is depicted in
Fig. 6.

Remark 3. The network clustering method proposed in
this subsection is based on eliminating the uncontrollable
sub-space of dynamical networks (A,B) via the aggrega-
tion matrix in (9). Since the aggregation matrix has the
block-diagonal structure, this method is different from the
simple elimination of the uncontrollable sub-space.

3.2 Approximation of Controllable Sub-Space

In this subsection, aiming at more significant order re-
duction, we relax the reducibility of I[l] via its equivalent
characterization of (15). Here, let us consider replacing
i in (15) and (16) with some k(≤ i) for relaxing the
reducibility condition. Recall that Theorem 1 provides the
exact reduction as in (17) thanks to the property that
Gi ≡ 0 for i > i. This property stems from the fact that
the i column vectors of HTen

1:i
span the controllable sub-

space of (A,B). From the perspective of relaxation, we
could expect small error ∥g (s)− g (s)∥ by replacing i with
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k(≤ i) as long as the column vectors of HTen1:k span a
space which appropriately approximates the controllable
sub-space of (A,B).

Let hkj[l] for j ∈ {1, · · · ,
∣∣I[l]∣∣} denote a column vector of

Hk
[l], namely

Hk
[l] =

[
hk1[l], · · · , h

k

|I[l]|[l]
]
, hkj[l] ∈ Rk×1. (20)

Then, the condition rank(Hi
[l]) = 1 can be rewritten by∣∣∣∣(hk1[l])T

hkj[l]

∣∣∣∣ ≥ (1− ε)
∥∥∥hk1[l]∥∥∥ ∥∥∥hkj[l]∥∥∥ , j ∈ {1, · · · ,

∣∣I[l]∣∣}
(21)

with k = i and ε = 0. Therefore, we consider determining
a cluster I[l] satisfying (21) for some k(≤ i) under a
preassigned constant ε ≪ 1. The following proposition
provides a valid measure to determine k, which can be
regarded as the dimension of approximated controllable
sub-space:

Proposition 2. (Ishizaki et al. (2010)). Consider the RD-
realization (A,B) with the output matrix C ∈ R1×n.
Denote

G (s) = C (sIn −A)
−1 B, Ĝk (s) = Ck (sIn −Ak)

−1 Bk

where

Ak := (en1:k)
T Aen1:k, Bk := (en1:k)

T B, Ck := Cen1:k.
If A is stable, then Ak is stable and∥∥∥G (s)− Ĝk (s)

∥∥∥
∞

≤
∣∣abs (C)A−1B − abs (Ck)A−1

k Bk

∣∣
(22)

holds. Moreover, if the entries of C have the same sign,
(22) holds with equality.

This proposition shows that the resultant error due to the
direct truncation of the RD-realization with k-th order is
bounded by the right-hand side of (22). This implies that
a k-dimensional sub-space spanned by the column vectors
HTen1:k approximates the controllable sub-space of (A,B)
as long as the right-hand side of (22) is small enough.
Therefore, we use such k to replace i in (16). The algorithm
of this technique is as follows:

(a) Calculate the RD-transformation of the dynamical
network (A,B) with C.

(b) By Proposition 2 with C := CHT, find the minimum
k such that

abs(Ck)A−1
k Bk − abs(C)A−1B

−abs(C)A−1B
≤ γ, (23)

i.e., the upper bound of the normalized approximation
error, for some preassigned γ ≪ 1.

(c) Find a cluster set {I[l]}l∈L satisfying (21) for some
preassigned ε ≪ 1.

(d) Derive the aggregation matrix P in (9) with (16) for
which i is replaced with k.

(e) Construct the aggregated model (PAPT,PB) with
CPT.

Remark 4. The algorithm proposed here can well work;
see the numerical example in Section 4. The analysis of
the resulting error ∥g (s)− g (s)∥ will be reported in later
publication.

-u 1

� y

300

Fig. 7. Complex network of Barabasi-Albert model

4. NUMERICAL EXAMPLE OF A COMPLEX
NETWORK REDUCTION

We apply the proposed algorithm in Section 3.2. Here,
we consider a dynamical network on a Barabasi-Albert
model (power of the preferential attachment: 1.2) shown
in Fig. 7, which is well-known as a complex network
model satisfying the scale-free and small-world property
[Boccalettia et al. (2006)]. This network has 300 nodes and
300 edges in which some hubs are included and the first
node is connected to every node within 5 edges. In this
figure, each node is ordered accordingly to the distance
(number of edges) from the first node.

The dynamical network (A,B) with C is given as follows:
For (2), A ∈ R300×300 is given by

ai,j =

{
1 (if node i and j, i ̸= j, are connected)
0 (else, i ̸= j)

r1 = 1, ri = 0 ∀i, i ̸= 1,

and B ∈ R300×1 and C ∈ R1×300 are given by

B = [1, 0, · · · , 0]T , C = [0, · · · 0, 1]
i.e., the input is applied at the first node and the output
is the state of the 300-th node.

Computing the RD-transformation and finding minimum
k satisfying (23) for γ = 0.05, we have k = 26. Then,
finding a cluster set {I[l]}l∈L satisfying (21) for ε = 0.01
and constructing the aggregation matrix in (9), we obtain
an aggregated model with the 71-th order. Here, Fig. 8
shows the network structure of the aggregated model, and
we can see from the figure that some nodes are aggregated
into clusters.

Furthermore, Fig. 9 shows the Bode diagram of the original
dynamical network (the solid line; 300-th order) and that
of the aggregated model (the line of ∗; 71-th order). From
this figure, we can see that both Bode diagrams are almost
identical.

5. CONCLUSION

In this paper, a network clustering method for SISO linear
dynamical networks has been proposed by using Reaction-
Diffusion transformation. From the point of view of the
control theory, the sets of states which behaves similarly
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Fig. 8. Complex network of Barabasi-Albert model
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for arbitrary input signals are interpreted as sets of uncon-
trollable states. In addition, it has been shown that such
states are efficiently found via Reaction-Diffusion trans-
formation. The method provides the aggregated model
preserving the stability and cluster structure of the original
system. Consequently, the network structure is retained
through the aggregation.

The error evaluation of aggregated models constructed by
the technique in Section 3.2 is one of future work.
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