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Abstract— This paper proposes a novel type of decentralized
observers for a network system, where identical linear subsys-
tems are interconnected. For this system, we derive a state-space
model with block-triangular structure, in which the dynamics
of the interaction among the subsystems and the dynamics
of each subsystem are decoupled. Based on the decoupled
model, we design a hierarchical decentralized observer, where
a kind of centralized observer estimates coarse information on
interaction among the subsystems and a decentralized observer
estimates the state of each subsystem. Furthermore, we derive
a necessary and sufficient condition of the observability for
the decentralized estimation under applying the hierarchical
decentralized observer.

I. I NTRODUCTION

For large-scale network systems, various methods of dis-
tributed/decentralized control have been intensively devel-
oped over the past few decades, in order to overcome
difficulties in heavy computation costs. One feature of these
methods is that the structure of feedback gain matrices is
restricted to reduce the amount of communication. More
precisely, the gains of the distributed controllers are struc-
tured accordingly to a communication graph, which is often
same as the interconnection topology of systems [1], [2],
[3]. This structure only allows to feed back the state of
a subsystem to the adjacent ones. On the other hand, the
gains of the decentralized controllers are block-diagonally
structured [4], [5]. This allows a local feedback, where the
state of a subsystem is fed back only to itself. Furthermore,
as the dual notion, much attention has been also paid on
distributed/decentralized observation [6], [7], [8], [9]. Many
conventional results such as decentralized Kalman filter have
been developed by the 1990s. In addition, the observability
problem for large-scale network systems has been exten-
sively addressed within a few years [10], [11], [12].

As one of large-scale network systems, we focus on sys-
tems where identical linear subsystems are interconnected.
In this paper, we propose a sort of decentralized observer
for this network system. The proposed observer, which we
call a hierarchical decentralized observer, is composed of
two kinds of observers; one is a global observer, which
coarsely estimates interaction among the subsystems (coarse
information), and the other is a set of local observers,
which exactly estimates the internal state on each subsystem
(fine information). This composition means that the signal

*Graduate School of Information Science and Engineering,
Tokyo Institute of Technology; 2-12-1, Meguro ward, Tokyo
{ishizaki,sakai }@cyb.mei.titech.ac.jp,
{kashima,imura }@mei.titech.ac.jp

transduction among the whole system is decoupled based
on its fineness. With this, the feedback gain matrix is to
be block-diagonally structured. Thus, the architecture of the
proposed observer is essentially different from that of the
existing decentralized/distributed observers.

The key idea to design such a hierarchical observer
is introducing a state-space model with block-triangular
structure, in which the dynamics of the interaction among
the subsystems and the dynamics on each subsystem are
decoupled. This model is derived from the viewpoints of
overlapping expansion of the original state-space, as well
as suitable contraction of the expanded state-space. Con-
sequently, this state-space model has generally a different
dimension from that of the original system, and realizes the
decoupling of the dynamics. These features are similar to
those of overlapping models introduced in, e.g., [7], [13],
[14]. However, the dynamics of subsystems is not completely
decoupled in those models. Furthermore, we analyze the
observability of the state-space model under applying the
hierarchical decentralized observer. It turns out that our result
is a more general version of the result in [15], although we
adopt a different approach to derive a necessary and sufficient
condition for the observability.

This paper is organized as follows: In Section II-A, we
describe network systems to be studied and formulate a
problem of a hierarchical decentralized observer design.
Then, in Section II-B, we solve the design problem by
deriving a state-space model with block-triangular structure,
and we investigate the observability condition of this model
in Section II-C. In Section III, we verify the effectiveness of
the proposed observer by a numerical example, and Section
IV concludes this paper.

NOTATION: For a vectorv and matricesM = {mi,j} and
N , the following notation is used in this paper:
R the set of real numbers
C the set of complex numbers
In the unit matrix of the sizen× n
enk the k-th column vector ofIn
M ⊗N the Kronecker product ofM andN ,

namely{mi,jN}
R (M) the range space ofM
N (M) the null space ofM
Eλ (M) the set{v| Mv = λv, v ̸= 0}
Λ (M) the set{λ| Mv = λv, v ̸= 0}

Let I be the set of integers. The matrixdiag(Mi)i∈I denotes
the block-diagonal matrix whose block-diagonal elements
are given byMi for i ∈ I. Furthermore,|I| denotes the



cardinality of I, and enI ∈ Rn×|I| denotes the matrix
whose column vectors are composed ofenk for k ∈ I (in
some order ofk), i.e., enI =

[
enk1

, . . . , enkm

]
∈ Rn×m for

I = {k1, . . . , km}.

II. H IERARCHICAL DECENTRALIZED OBSERVERDESIGN

A. Problem Formulation

In this paper, we deal with the following coupled linear
systems: Suppose thatN identical subsystems

Σi :

{
ẋi = aIxi + bIui, aI ∈ Rn×n, bI ∈ Rn×m

wi = cIxi, cI ∈ Rm×n (1)

with the statexi ∈ Rn for i ∈ {1, . . . , N} are interconnected
by the linear coupling

ui =
N∑

k=1

γi,kwk, (2)

for which the diagonalizableΓ = {γi,j} ∈ RN×N represents
the interconnection structure of the subsystems. Then, by
organizing the states asx = [xT1 , . . . , x

T
N ]T ∈ RNn, the state

equation of the above network system is formed into

ẋ = Ax, x (0) = x0 (3)

A = IN ⊗ aI + Γ⊗ bIcI ∈ RNn×Nn,

where bIcI ̸= 0 is assumed without loss of generality. In
what follows, we callxi in (1) “the internal state on thei-th
subsystem”.

Next, in order to formulate a hierarchical decentralized
(i.e., a kind of distributed) state estimation problem, we
define two kinds of measured outputs, which we call a
global output and alocal output. Denote the global output
by yG ∈ RPpG and the local output byyLI ∈ R|I|pL , where
I ⊆ {1, . . . , N} represents an index set of the subsystems.
Then, the output equation is defined by[

yG

yLI

]
= Cx (4)

C =

[
Ψ⊗ cG

(eNI )T ⊗ cL

]
∈ R(PpG+|I|pL)×Nn

whereΨ ∈ RP×N , cG ∈ RpG×n and cL ∈ RpL×n. The
system(A,C) is a generalization of the system dealt with in
[15], [16], where the identical SISO subsystem is described
by a generalized frequency variable.

In order to explain (4), let us introduce two outputs of the
i-th subsystem denoted byyGi = cGxi and yLi = cLxi. By
using this, the global outputyG is rewritten by the linear
combination

yG =
N∑

k=1

ψk ⊗ yGk

whereψk ∈ RP denotes thek-th column vector ofΨ. It
may, for example, represent the available(weighted) average
output of subsystems. Furthermore, the local outputyLI is
rewritten byyLI = [yLi ]i∈I (i.e., the vector composed ofyLi
for i ∈ I). The interconnection structure of the network
system(A,C) is depicted in Fig. 1.

Fig. 1. Linearly Coupled Network System.

In what follows, we formulate a hierarchical decentralized
(i.e., a kind of distributed) state estimation problem for
the network system(A,C). Here, the decentralized state
estimation means that the statexi is estimated by only
using the local outputyLi for each i ∈ I. However, such
decentralized estimation is generally difficult because input-
output information (interaction) among the subsystems (i.e.,
ui in (2)) is unknown.

On the other hand, it is observed that the interaction among
subsystems is relativelycoarser (more contracted) than the
interaction among the states on each subsystem. For example,
cI = [1, . . . , 1] in (1) means that the centroid ofxi is
only involved in the interaction among the subsystems, while
eachxi has then-dimensional dynamics interacting viaaI .
Actually, such a situation appears in, e.g., a kind of biological
networks, where a protein interacts with the others by their
averaged state while each of proteins has some determinate
dynamics [17]. This fact suggests a possibility that the states
xi are estimated by decoupling intocoarse interactionamong
subsystems described by (2) andfine interactionwithin the
individual subsystems described by (1).

In order to realize this decoupling, we consider estimating
the interaction (2) by using an extra output, which we call the
global outputyG. However in general, it is not clear that what
measured outputyG is desirable for the estimation of the
interaction. Thus, we first introduce the following state-space
representation of the system for hierarchical decentralized
estimation, and then, we discuss how to derive such a
representation.

Definition 1: Consider the network system(A,C) in (3)
and (4), and letI be a given index set. The state-space
representation(A, C) of (A,C) is said to be ahierarchical
state-space representationif A andC are in the form of

A =

[
αz 0
βz I|I| ⊗ aI

]
, C =

[
γz 0
0 I|I| ⊗ cL

]
αz ∈ Rnz×nz , βz ∈ R|I|n×nz , γz ∈ RPpG×nz (5)

and satisfy

CX (t) ≡
[
yG (t)
yLI (t)

]
, xI (t) ≡

{
(eNI )T ⊗ In

}
x (t) , ∀t

(6)



whereX = [zT, xTI ]
T for z ∈ Rnz andxI ∈ R|I|n obeys

Ẋ = AX , X (0) ∈ X

X :=

{
X

∣∣∣∣ X ∈
[

σzx{
(eNI )T ⊗ In

}
x

]
, x ∈ RNn

}
(7)

for some matrixσz ∈ Rnz×Nn.
In this hierarchical state-space representation (hereafter

denoted asHSS-representation),z represents the state of
interaction among the subsystems, andxI represents the state
to be estimated. Based on theHSS-representation, we also
define a hierarchical decentralized observer composed of two
kinds of the observerOz andoi, whereOz estimatesz from
yG, andoi individually estimatesxi from yLi :

Definition 2: Consider theHSS-representation(A, C) in
(5) and (7). LetH andhI = diag(hi)i∈I be matrices, and

Oz : ˙̂z = (αz −Hγz) ẑ +HyG (8)

{oi}i∈I : ˙̂xI =
{
I|I| ⊗ aI − hI

(
I|I| ⊗ cL

)}
x̂I

+βz ẑ + hIy
L
I .

Then,O(Oz, {oi}i∈I) is said to be ahierarchical decentral-
ized observerif lim

t→∞
(X̂ (t) − X (t)) = 0 for all X̂ (0) ∈

R(nz+|I|n) andX (0) ∈ X, whereX̂ = [ẑT, x̂TI ]
T.

This observer can be straightforwardly constructed by
using αz, βz and γz in (5). Note that in this hierarchical
decentralized observer (hereafter denoted as aHD-observer),
the global outputyG is fed back only to the observerOz,
while the local outputyLI of the subsystems{Σi}i∈I is fed
back only to the observer{oi}i∈I . Furthermore, from

X̂ (t)−X (t) (9)

= exp {(A− diag (H,hI) C) t}
(
X̂ (0)−X (0)

)
we can easily prove the following result:

Proposition 1: The observer (8) is theHD-observer if and
only if both (αz −Hγz) and (αI − hicL) for all i ∈ I are
Hurwitz.

Proposition 1 shows that all feedback gainsH and hi
for i ∈ I can be independently designed. This further
indicates that if we once design the global observer, we
can easily plug-in/out the other local observers to estimate
the state on subsystems. Moreover, the existence of the
HD-observer is guaranteed by the observability of(αz, γz)
and (aI , cL), which represent the dynamics ofz and the
subsystem, respectively. Thus, the fundamental problems that
we should consider are

• the derivation of aHSS-representation(A, C)
• the observability analysis of(αz, γz) and (aI , cL).

These problems are investigated in Section II-B and II-C
below. In the rest of this subsection, we give an illustrative
example:

Example: Let I = {1, 2} in (5). Then, the dynamics
of z ∈ Rnz and xI = [xT1 , x

T
2 ]

T ∈ R2n in the HSS-

Fig. 2. Hierarchical State-Space Representation.

Fig. 3. Hierarchical Decentralized Observer.

representation stands for

{
ż = αzz

yG = γzz
,


[
ẋ1
ẋ2

]
=

[
aI

aI

] [
x1
x2

]
+ βzz[

yL1
yL2

]
=

[
cL

cL

] [
x1
x2

]
.

From these equations, we see that the internal states on
the subsystems are determined by the individual system
ẋi = aIxi for i = 1, 2, and the interaction termβzz. Thus,
if the statez is estimated by the observerOz, eachxi can be
estimated in a decentralized manner by each observeroi. This
is the fundamental architecture of the proposed observer;
see Fig. 3. The architecture is essentially different from that
of the existing decentralized/distributed observers, where the
structure of feedback gain matrices is restricted [6], [7], [8],
[9].

Remark 1:The dimension is(nz + |I|n) for the HSS-
representation(A, C) andNn for the original network sys-
tem (A,C). These are different in general. In other words,
(A, C) is derived from some contraction of anoverlapped
state-space ofx, instead of the general coordinate transfor-
mation of (A,C); see Theorem 1 below for the details.

B. Derivation of Hierarchical State-Space Representation

In this subsection, we derive aHSS-representation(A, C)
associated with the network system(A,C). The following
theorem derives theHSS-representation by projectingΓ and
the subsystem(aI , bI , cI) onto a certain observable sub-
space. The observability matrix is denoted by

On (A,C) =


C
CA

...
CAn−1

 .



Theorem 1:Consider the network system(A,C) in (3)
and (4). Define

ν := rank (Γ) , µ := rank (On (aI , bIcI)) .

Let N ∈ RN×ν andM ∈ Rn×µ be matrices such thatNTN =
Iν , MTM = Iµ and

R (N) = R
(
ΓT

)
, R (M) = R

(
On (aI , bIcI)

T
)
. (10)

If Ψ ∈ RP×N andcG ∈ RpG×n in (4) satisfy

R
(
ΨT

)
⊆ R

(
ΓT

)
, R

(
cTG

)
⊆ R

(
On (aI , bIcI)

T
)
, (11)

then theHSS-representation(A, C) associated with(A,C)
is given by

αz = Iν ⊗ az + Γν ⊗ bzcz ∈ Rνµ×νµ

γz = ΨN⊗ cGM ∈ RPpG×νµ

βz = (eNI )TΓN⊗ bIcz ∈ R|I|n×νµ

σz = NT ⊗MT ∈ RNn×νµ

(12)

for (5) and (7), where

Γν := NTΓN ∈ Rν×ν , az := MTaIM ∈ Rµ×µ, (13)

bz := MTbI ∈ Rµ×m, cz := cIM ∈ Rm×µ.

Proof: Consider the redundant representation of(A,C)
as [

ẋG
ẋL

]
=

[
A 0

Γ⊗ bIcI IN ⊗ aI

] [
xG
xL

]
(14)[

yG

yLI

]
=

[
Ψ⊗ cG

(eNI )T ⊗ cL

] [
xG
xL

]
for xG (0) = xL (0) = x0. Note that

ΓNNT = Γ, MTaI = azM
T, bIcIMMT = bIcI

follows from the properties of the invariant sub-space. More-
over, from the supposition (11)

ΨNNT = Ψ, cGMMT = cG

holds. Here, taking[
z
xI

]
:= LT

[
xG
xL

]
, L =

[
N⊗M

eNI ⊗ In

]
and multiplying (14) byLT from the left, we have[

ż
ẋI

]
=

[
αz 0
βz I|I| ⊗ aI

] [
z
xI

]
(15)[

yG

yLI

]
=

[
ΨN⊗ cGM

I|I| ⊗ cL

] [
z
xI

]
.

Finally, by taking X (0) := L[xTG(0), x
T
L(0)]

T the result
follows.

As shown in Theorem 1,Γν is obtained by projecting
Γ onto the range space ofΓT, and (az, bz, cz) is obtained
by projecting the subsystem(aI , bI , cI) onto the observable
sub-space of(aI , bIcI). Furthermore, (11) characterizes the
condition that the global outputyG is exploited to estimate

z. Note that even though the dynamics ofz is obtained
by eliminating the unobservable sub-spaces of(IN ,Γ) and
(aI , bIcI), this does not mean(A, C) is observable; see
Section II-C for the observability analysis.

Remark 2:The dimensionνµ of the statez in the HSS-
representation(A, C) quickly increases as the rank ofΓ
and the dimension of the observable sub-space of(aI , bIcI)
become larger. From the model reduction perspective, the use
of lower dimensional approximation of the state-space ofz
is more desirable instead of theexactsystem. This topic will
be reported in the future.

C. Observability Criteria for Hierarchical State-Space Rep-
resentation

As shown in Proposition 1, the observability of(A, C)
is decoupled into those of(αz, γz) and (aI , cL). Therefore,
in the following theorem, we investigate the observability
of (αz, γz) because the observability of(aI , cL) is easily
checkable. Here, define

Π := {π | π ∈ Λ(az + λbzcz), λ ∈ Λ(Γν)}

and also define

Θπ := {λ | λ ∈ Λ(Γν) s.t. π ∈ Λ(az + λbzcz)}
Vπ := {ξ ⊗ η | ξ ∈ Eλ(Γν), η ∈ Eπ(az + λbzcz), λ ∈ Θπ }

for π ∈ Π.
Theorem 2:For Ψ ∈ RP×N and cG ∈ RpG×n satisfying

(11), consider the system(αz, γz) in (12). Then,(αz, γz) is
observable if and only if the following conditions hold:
(a) if rank (ΨN) ̸= ν

(i) (Γν ,ΨN) is observable
(ii) if R(cTG) ̸= R(cTI ), (az+λbzcz, cGM) is observable

for all λ ∈ Λ(Γν)
(iii) For all π ∈ Π such that|Θπ| ≥ 2

N (ΨN⊗ cGM) ∩R (Vπ) = {0}. (16)

(b) if rank (ΨN) = ν, condition (ii) holds.
Proof: [Proof of (a)] We can showΛ(αz) = Π and

Vπ = Eπ(αz) for all π ∈ Π by the relationαz (ξ ⊗ η) =
π (ξ ⊗ η). Thus, (αz, γz) is observable if and only if (16)
holds for allπ ∈ Π. By condition (iii), we need to examine
this only for π such that|Θπ| = 1.

First, supposeR(cTG) = R(cTI ). Then, there existsK
such thatcGM = Kcz. Hence, the observability of(az +
λbzcz, cGM) is equivalent to that of(az, cz). Moreover,
(az, cz) is observable by the definition in (13). On the other
hand

γz (ξ ⊗ η) = ΨNξ ⊗ cGMη ̸= 0

holds if and only ifΨNξ ̸= 0 and cGMη ̸= 0. From these
observations, (i) and (ii) are

• necessary for (16) with arbitraryπ ∈ Π,
• sufficient for (16) with allπ ∈ Π such that|Θπ| = 1.

This completes the proof.



[Proof of (b)] Let Ξ be a diagonalizing matrix such that
ΓνΞ = ΞΛν with Λν = diag(Λ(Γν)). Then, we have

α̃z = Ξ̃−1αzΞ̃ = Iν ⊗ az + Λν ⊗ bzcz

γ̃z = γzΞ̃ = ΨNΞ⊗ cGM

where Ξ̃ := Ξ ⊗ Iµ. By noting rank(ΨNΞ) = ν, the
observability of(αz, γz) is equivalent to that of

(α̃z, Iν ⊗ cGM).

Hence, condition (ii) is necessary and sufficient by the virtue
of the block-diagonal structure.

This theorem shows that the observability of(αz, γz) is
reduced to that of the systems of smaller dimension as far as
|Θπ| ≪ N . Actually, this relation was true in all examples
we tried. However, we have so far no theoretical result about
the bound of|Θπ|. The condition (iii) is also easily checkable
when the subsystems are SISO:

Corollary 1: For Ψ ∈ RP×N and cG ∈ R1×n satisfying
(11), consider the system(αz, γz) in (12) with bz, cTz ∈ Rµ.
Then, (αz, γz) is observable if and only if the following
conditions hold:
(a) if rank (ΨN) ̸= ν

(i) (Γν ,ΨN) is observable
(ii) if R(cTG) ̸= R(cTI ), (az+λbzcz, cGM) is observable

for all λ ∈ Λ(Γν)
(iii*) (az, bz) is controllable.

(b) if rank (ΨN) = ν, condition (ii) holds.
Proof: [Proof of (a)] Conditions (i) and (ii) are identical

to conditions(a)-(i) and (ii) in Theorem 2. Therefore, in
what follows, we show the equivalence between(a)-(iii) in
Theorem 2 and (iii*) in Corollary 1 if(az, bz, cz) is SISO.

We suppose (iii*). Note that(az, cz) is observable by the
definition in (13). Define polynomialsd(s) := det(sIµ −
az) and n(s) := d(s) · cz(sIµ − az)

−1bz. Considering the
feedback system of the scalar gainλ

n(s)/d(s)

1− λ · n(s)/d(s)
=

n(s)

d(s)− λn(s)
,

we see thatΛ (az + λbzcz) is identical to the set of roots of
d(s)− λn(s). In other words, forλ1 ̸= λ2,

Λ(az +λ1bzcz)∩Λ(az +λ2bzcz) = {π| d(π) = n(π) = 0}.

Therefore, ifd(s) andn(s) have no common root, or equiva-
lently (az, bz, cz) is a minimal realization, then|Θπ| = 1 for
all π ∈ Π. Hence, we need not examine condition(a)-(iii)
in Theorem 2.

On the other hand, if (iii*) does not hold, there exists
π̄ such thatd(π̄) = n(π̄). This means thatΘπ̄ contains
all eigenvalues ofΓν . Therefore,dim(R(Vπ̄)) ≥ ν. Since
rank(γz) < ν, (16) cannot hold. This completes the proof.

[Proof of (b)] From the same argument as in the proof of
(b) in Theorem 2, the result follows.

Corollary 1, which is a generalized result derived in [15]
where the case ofcG = cI is considered, gives a simple
condition when the subsystem is SISO andcG ∈ R1×n.
Furthermore, from the point of view of determining the

output matrices such asΨ and cG, these statements are
useful. For example, if only condition (i) is not satisfied,
we only have to replaceΨ to makeoverall network system
observable. In addition, Corollary 1 shows that if(az, bz) is
uncontrollable, then(αz, γz) is necessarily unobservable in
this specific case, independently of the choice of the output
matricesΨ andcG.

III. N UMERICAL EXAMPLE

In this section, we validate the proposedHD-observer
through a simple numerical example. Here, the state matrix
A in (3) is supposed to be given by the subsystem(aI , bI , cI)
and the network structureΓ as

aI =


−3.8 1 1 1 1
0 −1.8 2 0 0
0 0 −1.8 2 0
0 0 0 −1.8 2
0 2 0 0 −1.8


bI =

[
0 0 0 0 1

]T
, cI =

[
1 0 0 0 0

]
and

Γ =


−2 2 0 0
1 −3 2 0
0 1 −3 2
0 0 1 −1

 .
Furthermore, the output matrixC in (4) is given bycG = cI
and

Ψ =
[
1 −1 0 0

]
, cL =

[
1 0 0 0 0
0 1 0 0 0

]
with I = {4}. This means that the global outputyG is
measured from the first and second subsystems withcG, and
the local outputyLI is measured from the fourth subsystem
with cL, whose internal state is to be estimated. The global
structure of the network system(A,C) is depicted in Fig. 4.
Here, the rank of the observability matrixO20(A,C) is 11.
It should be emphasized that we cannot determine whether
the state on the fourth subsystem is estimated with usual
centralizedobservers.

We consider deriving theHSS-representation(A, C) in (5)
and (12) by Theorem 1. Here, the rank ofΓ is ν = 3, and
the dimension of the observable sub-space of(aI , bIcI) is
µ = 2. Therefore, the dimension ofz is νµ = 6. Then, by
using the projection of

N =


−0.71 −0.41 −0.29
0.71 0.41 −0.29
0 0.82 −0.29
0 0 0.87

 , M =


1 0
0 0.5
0 0.5
0 0.5
0 0.5


satisfying (10), we have

Γν =

 −4 1.73 0
0.58 −3.33 1.89
−0.20 0.83 −1.67


and

az =

[
−3.8 2
0 0.2

]
, bz =

[
0
0.5

]
, cz =

[
1 0

]
.



Fig. 4. Global structure of network system(A,C).
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Fig. 5. Trajectory of statesz and ẑ.

Clearly, Ψ and cG satisfy (11) fromcG = cI , and Ψ is
linearly dependent on the first row ofΓ.

Next, we examine the observability of(A, C), which is
decoupled into the the observability of(aI , cL) and(αz, γz)
in (12). The observability of(αz, γz) is verified by Corol-
lary 1. In fact, both(aI , cL) and (αz, γz) are observable.
Therefore, there exists some feedback gainsH andh4 in (8)
such that any convergence rate for the estimation ofz ∈ R6

andx4 ∈ R5 is achieved.
We design some feedback gainsH and h4 for the HD-

observer in (8) by the pole placement via MATLAB . Here,
Fig. 5 shows the trajectory ofz ∈ R6 (the solid lines)
and the estimation̂z ∈ R6 (the lines of ∗), and Fig. 6
shows the trajectory ofx ∈ R20 (the solid lines) and the
estimationx̂4 ∈ R5 (the lines of∗) under some initial values.
From these figures, we can see thatz, which represents the
interaction of the subsystems, is appropriately estimated, and
the decentralized estimation of the states onΣ4 is achieved.

IV. CONCLUSION

In this paper, the problem of a hierarchical decentralized
observer design for networked systems in which identical
subsystems are linearly coupled under a network, has been
addressed. First, to design the observer, we have derived a
hierarchical model composed of the dynamics on interaction
among the subsystems and the dynamics on subsystems
whose states are to be estimated. Based on the hierarchical
model, the hierarchical decentralized observer, where an
observer for the interaction and an observer for each sub-
system are hierarchically interconnected, has been designed.
In addition, the observability condition for realizing the
hierarchical decentralized observer has been derived.
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