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Abstract— In this paper, we propose a model order reduction
method for SISO linear dynamical networks, where a large
number of subsystems are interconnected according to a net-
work. In this method, the structure of spatially one-dimensional
reaction-diffusion that a SISO linear dynamical network has is
extracted by way of Householder transformation ordering the
state variables according to the distance from the source (i.e., an
input) of the diffusion. Based on this structure, a model order
reduction method with the diffusion structure of the system
preserved is presented, which can be applied for large-scale
systems. In addition, an easily-computable error bound via the
proposed model reduction is derived.

I. I NTRODUCTION

Dynamical systems on large-scale/complex networks,
whose behaviors are determined by the interaction of a
large number of subsystems, have been intensively stud-
ied. Examples of such dynamical networks include World
Wide Web, gene regulatory networks, spread of infection.
In these systems, the signal transmissions on a network
can be interpreted as a kind of diffusion phenomena on
the network. Thus, various works on diffusion phenomena
of dynamical systems on large-scale/complex networks have
been performed (see e.g., [1], [2], [3]).

In terms of such diffusion phenomena, this paper addresses
the model reduction issue of SISO linear systems on large-
scale networks expressed by undirected graphs, whose nodes
and edges denote subsystems and their interactions, respec-
tively. As shown in Fig 1, signal transmissions from a node
with an external input, i.e., a node of diffusion source, on a
network are regarded as a kind of spatiallyone-dimensional
reaction-diffusion. Therefore, if such a one-dimensional dif-
fusion structure is extracted from the system in question, it
can be expected that the complexity of the system is reduced
by ignoring the nodes (i.e., state variables) on which the
effect of the external input is relatively small, while keeping
the diffusion structure. To this end, we use Householder
transformation, which is effective for tri-diagonalization of
large-scale (symmetric) matrices. Thus, the proposed model
reduction method is effective for large-scale SISO linear
systems on undirected graphs.

Many kinds of model reduction methods of linear and
nonlinear systems have been developed [4], [5], [6]. How-
ever, the singular value decomposition (SVD) method such
as balanced model reduction cannot in general preserve the
above diffusion structure of the original system, although the
stability/passivity property is preserved [4], [5]. In addition,
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Fig. 1. Regarding diffusion on square graph as one-dimensional diffusion

this method often require computationally expensive opera-
tions such as balanced realizations. Therefore, these methods
are not in general suitable for large-scale systems. On the
other hand, Krylov method is also well-known as a model
reduction method for large-scale systems. However, in this
method, the stability property is not in general preserved,
and a priori computable error bound caused via model
reduction has not been derived even in linear systems [4].
Although the reduced model of the proposed method has
the mathematical structure similar to that of Krylov method,
the proposed method, by focusing on the class of reaction-
diffusion systems, has the stability preservation and provides
an explicit error bound caused via model reduction, which
can be easily obtained by iterative matrix computations. Fur-
thermore, the spatially one-dimensional reaction-diffusion
structure is determined for this class of systems.

This paper is organized as follows. In section II, we
describe a system to be studied here and present a coor-
dinate transformation to extract a one-dimensional reaction-
diffusion structure from the system. In section III, we analyze
the properties of the system with the reaction-diffusion struc-
ture and propose a model order reduction method. Section
IV shows the validity of the method by numerical examples
including reaction-diffusion systems on a square lattice and
a complex dynamical network. Finally section V concludes
this paper.
NOTATION: Let v be a (column or row) vector andM =
{mij} a matrix.

R the set of real numbers
R+ the set of non-negative real numbers
In the unit matrix of the sizen× n
v (p : q) the vector formed by thep- to q-th

entries ofv
M (p : q, r : s) the matrix formed by thep- to q-th rows

and ther- to s-th columns ofM
abs (M) the matrix defined by{|mij |}



Fig. 2. Graph structure of target system

II. EXTRACTION OF REACTION-DIFFUSION STRUCTURE

A. System Description

In this paper, we deal with SISO systems that evolve on
large-scale complex networks. The connection structure of
the networks is described by an undirected graph composed
of n nodes. The state ofi-th node is denoted byθi and the
scalar input and output of the system are denoted byu and
y. Then, the state equation is given by

θ̇i = −γiθi+

n∑
j=1,j ̸=i

αij (θj−θi)+βiu

y =

n∑
i=1

ηiθi

(1)

γi ≥ 0 with at least one strict inequality

αij = αji ≥ 0, i ̸= j

∀i, j, ∃p1,· · ·, pk s.t. αip1αp1p2 · · ·αpk−1pk
αpkj>0

where αij and γi denote the intensity of the diffusion
betweeni-th and j-th nodes, and the non-negative (self-
decomposition) reaction coefficient ofi-th node; see Fig. 2.
The last condition represents the connectivity of the graph.

By taking a state vectorθ :=
[
θn · · · θ1

]T
, we

obtain the system matrices of the state-space representation
(A,B,C) given by

A := {Aij}
Aij = αij (i ̸= j)

Aii = −γi −
n∑

j=1,j ̸=i

αij (i = j) ,

B =
[
βn · · · β1

]T
,

C =
[
ηn · · · η1

]
, (2)

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. The
symmetric matrixA is negative definite, namely the system
is stable.

B. Reaction-diffusion structure extraction

In this section, we introduce a class of state-space rep-
resentations that play a crucial role in this paper. These
representations are closely related to a reaction-diffusion
property.

Fig. 3. Illustration ofRD-representation

Definition 1: System matrices(A,B, C) are said to have
a reaction-diffusion structure with boundary inputif

A =


an bn−1

bn−1 an−1 bn−2

. . .
. ..

.. .
. ..

.. . b1
b1 a1

 (3)

B =
[
1 0 · · · 0

]T
for someai < 0 andbi ≥ 0 for all i = 1, · · · , n.

Hereafter, a representation by system matrices that have
the reaction-diffusion structure with boundary input is de-
noted as aRD-representation and its state vector andC are
denoted asx :=

[
xn · · · x1

]T
andC :=

[
cn · · · c1

]
.

In particular, if bi > 0 for all i, we sayRDp-representation.
This structure represents autonomous systems diffusively
coupled in a series cascade manner equipped with the bound-
ary input; see Fig. 3. Actually,RD-representations pop up
when we apply the finite difference method to spatially one-
dimensional partial differential reaction-diffusion systems
with a boundary input [7], [8], [9].

Theorem 1:The RD-representation of the system (1) is
given by

A = HT
+V

TAVH+, C = ∥B∥CVH+, (4)

whereV is an orthogonal matrix withB/ ∥B∥ in the first
column andH+ is a Householder matrix that makesA in
(4) tri-diagonal with the all off-diagonal entries being non-
negative. Moreover,i :=mini {bn−i=0} , A

(
1 : i, 1 : i

)
and

C
(
1 : i

)
are unique inRD-representations obtained by any

orthogonal transformations.
Proof: [Proof of RD-representation] We first show that

(4) gives aRD-representation of the system (1). See [10]
for details of the Householder transformation. Note that the
transformationV H+ is orthogonal. By direct computation,
we obtainHT

+V
TB =

[
∥B∥ 0 · · · 0

]T
. Furthermore,

the transformation fromA to A preserves the symmetry and
negative definiteness. Hence, the desired result follows.

[Proof of uniqueness] We move to prove the uniqueness.
From the structure of matrices inRD-representation,i is
equal to the dimension of the controllable subspace, and
consequently is independent of representations.

Suppose that an orthogonal matrixP makes (A,B, C)
and

(
P TAP, P TB, CP

)
be RD-representation. It suffices

to show

P
(
1: i, 1: i

)
=Ii, P

(
i+1:n, 1: i

)
=0, P

(
1: i, i+1:n

)
=0.

This can be shown by direct calculations ofPTAP andPTB
(the detail is omitted due to space limitations).



As in the proof,x
(
i+ 1 : n

)
is in the uncontrollable sub-

space that is irrelevant in the sense of input/output mapping.
Therefore, Theorem 1 means that by computing (4) and
eliminating x

(
i+ 1 : n

)
, we can extract the uniqueRDp-

representation obtained by the orthogonal transformations.
It should be emphasized that the construction of the

Householder matrices does not require computationally ex-
pensive operations, e.g., singular decompositions. Moreover,
constructing methods of the tri-diagonalizing matrix for large
matrices have been actively studied in the computer science
since Householder transformations are often applied when
finding the eigenvalues [10]. In this sense, this transformation
can be implemented even for large-scale systems.

III. A NALYSIS OF SYSTEMS GIVEN BY

REACTION-DIFFUSION REPRESENTATION WITH

BOUNDARY INPUT

A. Retroactive Series Cascade Structure

In this section, we analyze some properties of theRD-
representation and propose a method of model order reduc-
tion. Since the uncontrollable modes are irrelevant in the
sense of input/output mapping, we hereafter consider systems
with RDp-representation.

Theorem 2:Consider a SISO system with an inputu,
a state vectorx =

[
xn · · · x1

]T
and a RDp-

representation(A,B, C) in (3) with a stableA. Then, the
transfer function fromu to xi is given by

Gi (s) =
n∏

k=i

Sk (s) (5)

where 
Si+1 (s) =

bi+1

s− ai+1 − biSi (s)

S1 (s) =
b1

s− a1
.

(6)

In particular,

1) Gi is stable and has the relative degreen− i+ 1.
2) Si is stable and|Si (jω)| is monotonically decreasing

with respect toω ∈ R+.
3) For an integerj such that1 ≤ j ≤ n− 1, let us define

Si(s; bj) andGi (s; bj) by regardingbj as a variable.
Then, fori > j

∂Si (jω; bj)

∂bj
=

2

bi
Sj (jω; bj)

i∏
k=j+1

S2
k (jω; bj) (7)

holds.
Proof: For i ≤ n − 1, from the state equation with

respect to each state variable, we havexi = Si (s)xi+1 and
for i = n we havexn = Sn (s)u, wherebn = 1. Therefore
we obtain (5).
[Proof of 1)] Let us denote the numerator and denominator

polynomial of Si by Ni and Di, respectively. Then, we
obtain{

Ni+1 (s) = bi+1Di (s)
Di+1 (s) = (s− ai+1)Di (s)− biNi (s) ,

(8)

and consequently the polynomial sequence

Di+2 (s) = (s− ai+2)Di+1 (s)− b2i+1Di (s){
D0 (s) = 1
D1 (s) = s− a1.

(9)

Therefore, we obtain

Gi (s) =
n∏

k=i

Sk (s) =

(
n∏

k=i

bk

)
Di−1 (s)

Dn (s)
. (10)

SinceDi is i-th order polynomial, the relative degree ofGi

is n− i+ 1.
[Proof of 2)] The polynomial sequenceDn, · · · , D0 de-

fined by (9) makes a Strum sequence (see [10] for details).
Therefore, from the zero ofDi−1 exists between the two
zeros ofDi, which are next to each other, the result follows.
[Proof of 3)] Equation (6) yields

∂Sj+1 (jω; bj)

∂bj
=

∂

∂bj

{
bj+1

jω − aj+1 − bjSj (jω; bj)

}
=

2

bj+1
S2
j+1 (jω; bj)Sj (jω; bj) (11)

and for i ≥ j + 1

∂Si+1 (jω; bj)

∂bj
=

bi+1bi

{jω − ai+1 − biSi (jω; bj)}2
∂Si

∂bj

=
bi

bi+1
S2
i+1 (jω; bj)

∂Si (jω; bj)

∂bj
. (12)

By applying these equalities repeatedly, we obtain the desired
equality.

From Theorem 2-1), we can see thatGi has the low-pass
property with (n−i+1)-th order. More specifically,RDp-
representations represent a series cascade consisting of low-
pass filters. Note that theSi given in (6) are determined
retroactively in that the variation ofbi interferesSj for all
j > i as shown in Theorem 2-3).

B. Application to Model Order Reduction

In this section, we propose a model reduction method
based onRDp-representation. The idea is simple: eliminate
x (k + 1 : n) in order to obtaink-dimensional model.

Theorem 3:For all i and1 ≤ j ≤ n− 1

∥Gi (s; bj)−Gi (s; 0)∥∞ = Gi (0; bj)−Gi (0; 0) ≥ 0.
(13)

Proof: Trivially G(s; 0) = 0 for all i ≤ j sincebj =
0 implies Sj = 0. Furthermore,|Gi (jω)| is monotonically
decreasing with respect toω from Theorem 2. Therefore, the
result holds for alli ≤ j. In what follows, we assumei > j.

Suppose the following inequalities hold:∣∣∣∣∂Gi (jω; bj)

∂bj

∣∣∣∣ ≤ ∣∣∣∣∂Gi (0; bj)

∂bj

∣∣∣∣ , (14)

∂Gi (0; bj)

∂bj
≥ 0. (15)



Then, we obtain

|Gi (jω; bj)−Gi (jω; 0)| =

∣∣∣∣∣
∫ bj

0

∂Gi (jω; b)

∂b
db

∣∣∣∣∣
≤
∫ bj

0

∣∣∣∣∂Gi (0; b)

∂b

∣∣∣∣ db = ∫ bj

0

∂Gi (0; b)

∂b
db

= Gi (0; bj)−Gi (0; 0) . (16)

This readily implies (13).

What remains to be shown is (14) and (15). Note
that Si (0; bj) > 0. By differentiating Gi (jω; bj) =∏n

k=iSk (jω; bj) and using Theorem 2-2) and 2-3), we have

∂Gi (jω; bj)

∂bj
=

n∑
l=i

∂Sl

∂bj

n∏
m=i,m̸=l

Sm (jω; bj)


=

2

bi
Sj(jω; bj)

n∑
l=i


l∏

k=j+1

S2
k(jω; bj)

n∏
m=i,m ̸=l

Sm(jω; bj)

,

which directly implies (15). Moreover

∣∣∣∣∂Gi (jω; bj)

∂bj

∣∣∣∣
≤

∣∣∣∣∣∣ 2biSj(jω; bj)

n∑
l=i


l∏

k=j+1

S2
k (jω; bj)

n∏
m=i,m ̸=l

Sm(jω; bj)


∣∣∣∣∣∣

≤
∣∣∣∣ 2biSj (0; bj)

∣∣∣∣ n∑
l=i

∣∣∣∣∣∣
l∏

k=j+1

S2
k (0; bj)

n∏
m=i,m ̸=l

Sm (0; bj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 2biSj(0; bj)
n∑
l=i


l∏

k=j+1

S2
k(0; bj)

n∏
m=i,m̸=l

Sm (0; bj)


∣∣∣∣∣∣

=

∣∣∣∣∂Gi (0; bj)

∂bj

∣∣∣∣ . (17)

Thus, (14) follows.

This Theorem enables us to estimate the upper bound of
the error caused by eliminatingx (j + 1 : n):

Theorem 4:Let (A,B, C) be system matrices ofRDp-
representation. DenoteG (s)=C (sIn−A)

−1 B andĜk (s)=
Ck (sIk−Ak)

−1 Bk, where Ak := A (1 :k, 1:k), Bk :=
B (1 :k) andCk :=C (1 :k). If A is stable, thenAk is stable
and∥∥∥G (s)− Ĝk (s)

∥∥∥
∞

≤
∣∣abs (C)A−1B − abs (Ck)A−1

k Bk

∣∣
(18)

holds. Moreover, if the entries ofC have the same sign, (18)
holds with equality.

Proof: The proof of stability ofAk is trivial thanks to
the negative definiteness ofA. Noting Gi (jω; bn−k = 0) =

0 for all i ≤ n− k, we obtain∣∣∣G (jω)− Ĝk (jω)
∣∣∣

=

∣∣∣∣∣
n∑

i=1

ciGi (jω)−
n∑

i=1

ciGi (jω; bn−k = 0)

∣∣∣∣∣
≤

n∑
i=1

|ci| {Gi (0)−Gi (0; bn−k = 0)}

= abs (C)
(
−A−1

)
B − abs (Ck)

(
−A−1

k

)
Bk.

Therefore, the result follows. The equality follows from the
fact abs (C) = C (or − C) if the entries ofC have the same
sign.

This theorem indicates that the upper bound of the ap-
proximation error inH∞-norm can be obtained by only
the matrix computation. In particular, if the all signs of the
element of the matrixC are same, this gives the exact value.

Remark 1:We can easily determineA−1
k in (18) by

iterative calculation based on

A−1
k+1 =

[
A−1

k + ζb2n−kΛΛ
T −bn−kζΛ

−bn−kζΛ
T ζ

]
, (19)

whereζ=1/
{
an−k−b2n−kA

−1
k (k, k)

}
andΛ=A−1

k (1 :k, k).
Remark 2:The proposed method is mathematically sim-

ilar to the model reduction based on Lanczos algorithm in
Krylov method. However, Krylov method in general does not
produce a tri-diagonal matrix in which off-diagonal terms
have thesame sign, since Lanczos algorithm is sensitive for
rounding errors. In addition, it is known that if an system
in question has uncontrollable states, the algorithm will stop
due to occurring a division by zero. In fact, using the popular
Krylov method we cannot transform the system matrix to
a tri-diagonal matrix in numerical examples in sections
IV-A and IV-B, since the reaction-diffusion systems on a
network dealt with in this paper possibly have uncontrollable
states due to the symmetry of their network. On the other
hand, the proposed method can provide an order reduced
model that can be regarded as a one-dimensional reaction-
diffusion system, by using Householder transformation that is
relatively robust for rounding errors to make all off-diagonal
terms positive. Furthermore, by this positivity of off-diagonal
terms the error bound via model reduction can be easily
obtained.

The algorithm of the model reduction by the proposed
method is as follows:

1) Transform the system matrices of the system (1) to
RD-representation(A,B, C) by applying Theorem 1

2) Give a positive constantε as the upper bound of the
approximation error

3) Find the minimumk satisfying

abs (Ck)A−1
k Bk − abs (C)A−1B

−abs (C)A−1B
< ε, (20)

i.e., the estimation of the normalized approximation
error

4) ConstructĜk (s)=Ck (sIk−Ak)
−1 Bk



IV. N UMERICAL EXAMPLES

A. Model reduction for two-dimensional diffusion system

First, in order to understand the proposed method in an
intuitive way, we consider a diffusion system on the square
lattice composed of20 × 20 nodes, as shown in Fig. 4.
Suppose the system matrices(A,B,C) is given as follows:
A ∈ R400×400 is given by{

αij = 1 (if node i and j, i ̸= j, are connected)
αij = 0 (else, i ̸= j)

γ1 = 1, γi = 0 ∀i, i ̸= 1 (21)

in (1), andB ∈ R400×1 and C ∈ R1×400 are given by

B =
[
1 0 · · · 0

]T
, (22)

C =
[
1 · · · 1

]
, (23)

i.e., the input is applied at the first node and the output is
the sum of all states.

From (4), we obtain theRD-representation(A,B, C) for
this system. Let us denote byAi,j the i, j-th element of
A ∈ R400×400 and by ci the i-th element ofC ∈ R1×400.
Then in the upper figure of Fig. 5, for eachk in the horizontal
axis, the broken line shows the values of the reaction term∑400

i=1Ak,i, i.e., the sum of thek-th row of A, the line of
∗ shows the values of the diffusion termAk,k+1 (= b400−k

in (3)), i.e., the off-diagonal entries ofA, and the solid line
shows the values ofc400−k+1, i.e., the elements ofC. We
can see from this figure that each element ofC for around
k ≥ 60 has the value of almost“zero”, and each element
of the reaction term and the diffusion term decreases as
k increases. This means that as the effect of the input on
the statex400−k+1 is weaker (i.e., ask increases), the self-
dissolution of the corresponding state is stronger andb400−k

in (3), i.e, the intensity of the interaction between the states
x400−k+1 andx400−k, is smaller. Therefore, it turns out that
the statesx (k+1:400) have little relation to the input-output
properties.

The lower figure of Fig. 5 expresses the values of the left-
hand side of (20), i.e., the upper bound of the approximation
error via model order reduction, for eachk. This figure shows
that the approximation error due to neglecting the states
x (54:400) is very small. In this example, we can apply
(18) with equality in Theorem 4 since every element ofC is
positive. In fact, the minimum ofk satisfying (20) is given
by k = 53 when ε = 0.05. From Fig. 6, where the solid
line denotes the Bode diagram of the original system (400-
th order) and the symbols∗ denote that of the approximated
system atk = 53 (53-th order), we see that the both Bode
diagrams are almost identical.

B. Model reduction for diffusion system on complex networks

Next, we consider a diffusion system on the complex
network of a Barabasi-Albert model (exponent:1.2) in Fig. 7,
which is well-known as a graph satisfying the scale-free and
small-world property [3]. This graph has300 nodes and300
edges in which some hubs are included and the first node
is connected to every other node within6 edges. Since in

Fig. 4. Two dimensional diffusion (20×20)
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Fig. 5. Plots of values of matrices and upper bound of the approximation
error

this graph all nodes are relatively close to the first node, at
which the input is given, it is expected that the model order
reduction method based on the proposedRD-representation
is effective. The matricesA ∈ R300×300, B ∈ R300×1,
and C ∈ R1×300 are given by (21), (22), and (23). Then
in a similar way to the case of Fig. 5, the upper figure
of Fig. 8 shows the reaction term and the diffusion term
of A ∈ R300×300 and the element ofC ∈ R1×300 in the
RD-representation of(A,B,C). The lower one of Fig. 8
also shows the upper (actually, the exact) bound of the
approximation error between the original system and the
truncated system.

From Fig. 8, we find that each element ofC have the value
of almost“zero” for aroundk ≥ 40, and the elements ofA
and C have relatively dispersed values for aroundk ≤ 150
due to the complexity of the graph. This induces a negligible
approximation error for aroundk ≥ 40.

In fact, the minimum values ofk satisfying (20) are given
by k = 33 when ε = 0.05. In Fig. 9, the Bode diagram of
the original system is denoted by the solid line, that of the
truncated system by∗. It turns out from this figure that the
input-output property of the original system is appropriately
approximated via the proposed method.

V. CONCLUSION

In this paper, we proposed a model order reduction method
for SISO linear dynamical networks. In this method, the



— Original system
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Fig. 6. Bode diagram

1

2 3

300

Fig. 7. Complex network of Barabasi-Albert model

structure of spatially one-dimensional reaction-diffusion that
a SISO dynamical network has is extracted by way of
a Householder transformation ordering the state variables
according to the distance from the source (i.e., an input)
of the diffusion. Based on this structure, a model order
reduction method with the reaction-diffusion structure of the
system preserved is presented. In addition, this model order
reduction is systematically executed since the upper bound
of the approximation error can be preliminarily obtained by
simple matrix computations. The Householder transforma-
tion does not require computationally expensive operations,
e.g., singular decompositions. In this sense, this method can
be implemented for large-scale systems. An extension of this
approach to the case of MIMO systems is one of future work.
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