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Abstract—In this paper, we propose a model order reduction Source

method for SISO linear dynamical networks, where a large
number of subsystems are interconnected according to a net-
work. In this method, the structure of spatially one-dimensional
reaction-diffusion that a SISO linear dynamical network has is
extracted by way of Householder transformation ordering the
state variables according to the distance from the source (i.e., an
input) of the diffusion. Based on this structure, a model order
reduction method with the diffusion structure of the system
preserved is presented, which can be applied for large-scale
systems. In addition, an easily-computable error bound via the
proposed model reduction is derived.

Fig. 1. Regarding diffusion on square graph as one-dimensional diffusion

. INTRODUCTION this method often require computationally expensive opera-

Dynamical systems on large-scale/complex networksions such as balanced realizations. Therefore, these methods
whose behaviors are determined by the interaction of a@e not in general suitable for large-scale systems. On the
large number of subsystems, have been intensively studther hand, Krylov method is also well-known as a model
ied. Examples of such dynamical networks include Worldeduction method for large-scale systems. However, in this
Wide Web, gene regulatory networks, spread of infectiormethod, the stability property is not in general preserved,
In these systems, the signal transmissions on a netwoglkkd a priori computable error bound caused via model
can be interpreted as a kind of diffusion phenomena omeduction has not been derived even in linear systems [4].
the network. Thus, various works on diffusion phenomenAlthough the reduced model of the proposed method has
of dynamical systems on large-scale/complex networks hatlee mathematical structure similar to that of Krylov method,
been performed (see e.g., [1], [2], [3]). the proposed method, by focusing on the class of reaction-

In terms of such diffusion phenomena, this paper addressei$fusion systems, has the stability preservation and provides
the model reduction issue of SISO linear systems on largan explicit error bound caused via model reduction, which
scale networks expressed by undirected graphs, whose nodaa be easily obtained by iterative matrix computations. Fur-
and edges denote subsystems and their interactions, respiermore, the spatially one-dimensional reaction-diffusion
tively. As shown in Fig 1, signal transmissions from a nodeatructure is determined for this class of systems.
with an external input, i.e., a node of diffusion source, on a This paper is organized as follows. In section Il, we
network are regarded as a kind of spatiallye-dimensional describe a system to be studied here and present a coor-
reaction-diffusion. Therefore, if such a one-dimensional difginate transformation to extract a one-dimensional reaction-
fusion structure is extracted from the system in question, #iffusion structure from the system. In section I, we analyze
can be expected that the complexity of the system is reducgsk properties of the system with the reaction-diffusion struc-
by ignoring the nodes (i.e., state variables) on which thgire and propose a model order reduction method. Section
effect of the external input is relatively small, while keepingy shows the validity of the method by numerical examples
the diffusion structure. To this end, we use Householdgncluding reaction-diffusion systems on a square lattice and
transformation, which is effective for tri-diagonalization ofg complex dynamical network. Finally section V concludes
large-scale (symmetric) matrices. Thus, the proposed modgis paper.
reduction method is effective for large-scale SISO lineagyoTATION: Let v be a (column or row) vector antf =
systems on undirected graphs. y i

Many kinds of model reduction methods of linear and{m”} a matrix.
nonlinear systems have been developed [4], [5], [6]. How- R
ever, the singular value decomposition (SVD) method such Ry
as balanced model reduction cannot in general preserve theln

the set of real numbers
the set of non-negative real numbers
the unit matrix of the sizew x n

above diffusion structure of the original system, although the v (7 : 4) the vector formed by the- to ¢-th
stability/passivity property is preserved [4], [5]. In addition, entries O_fv
M (p:q,r:s) the matrix formed by the- to ¢-th rows
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Fig. 3. lllustration ofRD-representation

Definition 1: System matrice$.A, B,C) are said to have
a reaction-diffusion structure with boundary inpifit
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Il. EXTRACTION OF REACTION-DIFFUSION STRUCTURE N b.. by
1 a1

A. System Description T

B = [1

In this paper, we deal with SISO systems that evolve on [ ’ 0 ]
large-scale complex networks. The connection structure §r somea; <0 andb; >0 foralli=1,---,n.

the networks is described by an undirected graph composedHereatfter, a representation by system matrices that have
of n nodes. The state afth node is denoted bg; and the the reaction-diffusion structure with boundary input is de-

scalar input and output of the system are denoted: lapd  noted as &RD-representation and its state vector ghdre

ST T
y. Then, the state equation is given by denoted asc:=[ z, --- x1 | andC:=[c, -+ ¢ |.
N In particular, ifb; > 0 for all 7, we sayRDp-representation.
6, = —i0i+ Z ai; (0,—0:)+ Biu This structure represents autonomous systems diffusively

Pyl ) coupled in a series cascade manner equipped with the bound-

n ary input; see Fig. 3. ActuallyRD-representations pop up
y= Z 1;0; when we apply the finite difference method to spatially one-
i=1 dimensional partial differential reaction-diffusion systems
~; > 0 with at least one strict inequality with a boundary input [7], [8], [9].
ij =0 >0, i# ] Theorem 1:The RD-representation of the system (1) is
Vi, j, 3p1, -, ok st Qipy Qpypy* * "Opy_ 1 pp Opyj >0 given by
A=H[VTAVH,, C=|B|CVH,, (4)

where «;; and v; denote the intensity of the diffusion
betweeni-th and j-th nodes, and the non-negative (selfwhereV is an orthogonal matrix with3/ || B|| in the first
decomposition) reaction coefficient 6th node; see Fig. 2. column andH, is a Householder matrix that makes in
The last condition represents the connectivity of the graph(4) tri-diagonal with the all off-diagonal entries being non-

By taking a state vectot) := [ 6, --- 6 }T, we negative. Moreovet,:=min; {b,—;=0}, A(1:4,1:%) and
obtain the system matrices of the state-space representatib(l : i) are unique inRD-representations obtained by any
(A, B,C) given by orthogonal transformations.

Proof: [Proof of RD-representation] We first show that
A= {A;} (4) gives aRD-representation of the system (1). See [10]
Aij =i (1#7) for details of the Householder transformation. Note that the
n o transformationV H, is orthogonal. By direct computation,
A = =i - Z i (i=17), we obtainH{V'B=[ |B| 0 - 0 ]T. Furthermore,
=t ;‘é’T the transformation fromt to A preserves the symmetry and
B=[Bn - B ], negative definiteness. Hence, the desired result follows.
C = [ M -+ M } , 2) [Proof of uniqgueness] We move to prove the uniqueness.

From the structure of matrices iRD-representation; is
where A < R*™", B € R”Xl and € € R'*". The equal to the dimension of the controllable subspace, and
symmetric matrixA is negative definite, namely the systemconsequently is independent of representations.

is stable. Suppose that an orthogonal matriX makes (A, B,C)
S _ and (P TAP, P TB,CP) be RD-representation. It suffices
B. Reaction-diffusion structure extraction to show

In thls_ section, we mtroduc_e a clas_s of _state-space re@"(lzf,lzg):lf, P(E—H:n,l:%):o, p (1:{,E+1:n):0.
resentations that play a crucial role in this paper. These v
representations are closely related to a reaction-diffusiofhis can be shown by direct calculations®f AP and PT3
property. (the detail is omitted due to space limitations). ]



As in the proof.x (€+ 1: n) is in the uncontrollable sub- and consequently the polynomial sequence
space that is irrelevant in the sense of input/output mapping.

Therefore, Theorem 1 means that by computing (4) and Diya (s) = (s — air2) Dit1 (s) — b1 D (s)
eliminating z (i + 1 : n), we can extract the uniquBDp- Dy (s)=1 ©)
representation obtained by the orthogonal transformations. D (s) =s—ay.

It should be emphasized that the construction of thg )
Householder matrices does not require computationally exherefore, we obtain

pensive operations, e.g., singular decompositions. Moreover, n n Dy 1 (s)
constructing methods of the tri-diagonalizing matrix for large Gi(s) =[] Sk(s) = (H bk) l;; (10)
matrices have been actively studied in the computer science k=i k=i n (5)

since Householder transformations are often applied Whpé]nceD- is i-th order polynomial, the relative degree Gf
finding the eigenvalues [10]. In this sense, this transformatiqg n ! '

X —i+ 1.
can be implemented even for large-scale systems. [Proof of 2] The polynomial sequencd,,---, Dy de-
I1l. ANALYSIS OF SYSTEMS GIVEN BY fined by (9) makes a Strum sequence (see [10] for details).
REACTION-DIFFUSION REPRESENTATION WITH Therefore, from the zero oD,_; exists between the two
BOUNDARY INPUT zeros ofD;, which are next to each other, the result follows.
A. Retroactive Series Cascade Structure [Proof of 3] Equation (6) yields
In this seption, we analyze some properties of RiB- 0Sj1 (Jw; bj) 0 bjt1
representation and propose a method of m_odel order_ reduc- 9, T b | jw — ajy1 — b;S; (jw;bj)
tion. Since the uncontrollable modes are irrelevant in the . . ‘
sense of input/output mapping, we hereafter consider systems = ﬁsj—o—l (Jws;bj) Sj (jwib;)  (11)
J

with RDp-representation.
Theorem 2:Consider a SISO system with an input and fori>j+1

i1
a state vectorr = [z, --- 21| and a RDp- 9t (i b b b, 95
representatior(.A, 3,C) in (3) with a stableA. Then, the % = — an R 5 8b%
transfer function fromu to z; is given by J {zw —dit1 T bisigéw(? ?’J')i \ J
d = SR (i) S (12)
Gi(s) =[] Sk (s) 5) b T o
k=i By applying these equalities repeatedly, we obtain the desired
where equality. ]
s B biy1 From Theorem 2-1), we can see tl@t has the low-pass
i1 (s) = s — ajp1 — biS; (s) ©6) property with (n—i+1)-th order. More specificallyRDp-
S, (s) = by representations represent a series cascade consisting of low-
YT s ey pass filters. Note that thé; given in (6) are determined
In particular, retroactively in that the variation df; interferesS; for all

1) G; is stable and has the relative degree i + 1. j > i as shown in Theorem 2-3).

2) S, is stable andsS; (jw)| is monotonically decreasing
with respect tov € R,

3) For an integerj such thatl < j < n—1, let us define In this section, we propose a model reduction method
Si(s;b;) and G, (s;b;) by regardingb; as a variable. based orRDp-representation. The idea is simple: eliminate
Then, fori > j 2 (k+1:n) in order to obtaink-dimensional model.

Theorem 3:For alli and1 <j<n-—-1

B. Application to Model Order Reduction

9S; (juwib;) 2. .. N
g, oGt 1L SEGesh) Oy ) - sl = G0ity) - G 0:0) > 0
=j+1 (13)
holds. , _ _ Proof: Trivially G(s;0) = 0 for all i < j sinceb; =
Proof: Fori < n — 1, from the state equation With  jmpjies §; = 0. Furthermore|G; (jw)| is monotonically
respect to each state variable, we haye= S (s) zi+1 and  gecreasing with respect tofrom Theorem 2. Therefore, the
for i = n we havez, =5, (s)u, whereb, = 1. Therefore  eqit holds for alli < j. In what follows, we assume> ;.

we obtain (5). ) Suppose the following inequalities hold:
[Proof of 1) Let us denote the numerator and denominator

polynomial of S; by N; and D;, respectively. Then, we 0G; (jw; bj) 0G; (0;b;)
: < ; (14)
obtain 0b; 0b;
Niy1(s) = bit1D; (s) 9G; (0;b;)
8 ——2 > 0. 15
{ Dii () = (s —ae) Di(s) ~ i, (), O o ° (19)



Then, we obtain

|G (jw; by) — Gi (jw; 0)] = / %db
0
: dG; (0;b)
< =
_/0 ‘db /0 P
=G, (0 G (0;0). (16)

This readily implies (13).

What remains to be shown is (14) and (15). Notg,qi.ps €)=C (or —C)

that S; (0;b;) > 0. By differentiating G; (jw;b;)

0 for all 7 <n — k, we obtain

G (o) = G (jw)\
- e
< ZMHG

= abs (€) (—A™") B—abs (Cr) (A} ") By.

(jw; bp—k = 0)

-3 et

Gi (0;bp—r = 0)}

Therefore, the result follows. The equality follows from the
if the entries ofC have the same

sign. [

[T Sk (JW bj) and using Theorem 2-2) and 2-3), we have ‘This theorem indicates that the upper bound of the ap-

n

H S (jw; by)

m=i,m#l

0G; (jw; bj)
b,

_Z{as,

g

which directly implies (15). Moreover

}

HSkjwb HS (jw; b;

k=j+1 m=1i,m#l

]wbz

=i

}

9G; (jw; b))
0b;
n l n
2 .
< b i (jw; by) Z H S7 (jw; b)) H S (jw; bj)
v =i \k=j+1 m=i,m#l
n l n
<= WY LTI S7i0) I Sm(0505)
v I=i |k=j+1 m=i,m#l
n l n
2
= 1=850:0,)) ¢ [T S#ib;) I S (0;)
=i \k=j+1 m=i,m#l
= | =07 17
%, (17)
Thus, (14) follows. ]

This Theorem enables us to estimate the upper bound
the error caused by eliminating(j + 1 : n):

Theorem 4:Let (A, B,C) be system matrices oRDp-
representation. Denoté (s) =C (sI,,—A) "' BandGy, (s)=
Cr (sIy—Ap) "' By, where Ay, = A(1:k 1:k), By
B(1:k) andCy:=C (1:k). If A is stable, then4,, is stable
and

HG (s) — G (S)H < |abs (€) A7 B — abs (Ci) Ay "By
- (18)
holds. Moreover, if the entries @f have the same sign, (18)
holds with equality.
Proof: The proof of stability ofA4; is trivial thanks to

the negative definiteness of. Noting G; (jw; b,—x = 0) =

proximation error in H.,-norm can be obtained by only
the matrix computation. In particular, if the all signs of the
element of the matriX are same, this gives the exact value.

Remark 1:We can easily determine:él,;1 in (18) by
iterative calculation based on
0 [ATT G G AAT b,k CA
Ak-‘,—l - [ _bn—k<A T 4 ’ (19)

where¢=1/{a,_r—b2_, A" (k,k)} and A=A, ' (1:k, k).

Remark 2: The proposed method is mathematically sim-
ilar to the model reduction based on Lanczos algorithm in
Krylov method. However, Krylov method in general does not
produce a tri-diagonal matrix in which off-diagonal terms
have thesame signsince Lanczos algorithm is sensitive for
rounding errors. In addition, it is known that if an system
in question has uncontrollable states, the algorithm will stop
due to occurring a division by zero. In fact, using the popular
Krylov method we cannot transform the system matrix to
a tri-diagonal matrix in numerical examples in sections
IV-A and IV-B, since the reaction-diffusion systems on a
network dealt with in this paper possibly have uncontrollable
states due to the symmetry of their network. On the other
hand, the proposed method can provide an order reduced
model that can be regarded as a one-dimensional reaction-
diffusion system, by using Householder transformation that is
relatively robust for rounding errors to make all off-diagonal
terms positive. Furthermore, by this positivity of off-diagonal
tetrms the error bound via model reduction can be easily
obtained.

The algorithm of the model reduction by the proposed
method is as follows:

1) Transform the system matrices of the system (1) to
RD-representatiori.A, B, C) by applying Theorem 1

2) Give a positive constart as the upper bound of the
approximation error

3) Find the minimumk satisfying

abs (Cr,) A !By, — abs (C) A™'B .
—abs (C) A~1B ’
e., the estimation of the normalized approximation

error K
4) ConstructGy, (s)

(20)

:Ck (SIk*Ak)_l



IV. NUMERICAL EXAMPLES @> —-O—0)
A. Model reduction for two-dimensional diffusion system 389
First, in order to understand the proposed method in an i
intuitive way, we consider a diffusion system on the square 19; 391 PR
lattice composed oR0 x 20 nodes, as shown in Fig. 4.
Suppose the system matriced, B, C) is given as follows:
A € R400x400 is given by 3 10 400

a;; =1 (if node ¢ and j, i # j, are connected) . . _ o
ij = 0 (else, i 7& j) Fig. 4. Two dimensional diffusion (2020)

n=1 v%=0W,i#l (1) [Values of element of matriced andC]
in (1), andB € RY*9%1 and C € R'*4% are given by °’['A - - Reaction term * * Diffusion term
- ~ Element ofC
B=[10 - 0], (22) ok
C = [ 1 -1 ], (23)
i.e., the input is applied at the first node and the output is -5 ‘ ‘ ‘ Jk
0 100 200 300 400

the sum of all states.

From (4), we obtain th&kD-representatior{.4, B,C) for
this system. Let us denote hy; ; the 4, j-th element of
A € R400x400 and bye¢; the i-th element ofC € R1*400,

) [Upper bound of approximation error]

Then in the upper figure of Fig. 5, for eakhin the horizontal 0
axis, the broken line shows the values of the reaction term
S Ay, ie., the sum of the:-th row of A, the line of 0, — — — 4Of

* shows the values of the diffusion tersy, 11 (= baoo—x

in (3)), i.e., the off-diagonal entries od, and the solid line

shows the Value_s °_’f400*k+1' i.e., the elements of. We Fig. 5. Plots of values of matrices and upper bound of the approximation

can see from this figure that each elementCdior around gyror

k > 60 has the value of almostzero”, and each element

of the reaction term and the diffusion term decreases as

k increases. This means that as the effect of the input dhis graph all nodes are relatively close to the first node, at

the statersoo_r11 is weaker (i.e., a® increases), the self- which the input is given, it is expected that the model order

dissolution of the corresponding state is strongerfaggl,  reduction method based on the propo&dd-representation

in (3), i.e, the intensity of the interaction between the statd§ effective. The matricesA € R¥03%0 B ¢ R30x1,

Z400—k+1 aNd x40k, is smaller. Therefore, it turns out thatand C' € R'3% are given by (21), (22), and (23). Then

the states: (k+1:400) have little relation to the input-output in & similar way to the case of Fig. 5, the upper figure

properties. of Fig. 8 shows the reaction term and the diffusion term
The lower figure of Fig. 5 expresses the values of the lefef A € R39%300 and the element of € R'**% in the

hand side of (20), i.e., the upper bound of the approximatioRD-representation of A, B, C). The lower one of Fig. 8

error via model order reduction, for eakhThis figure shows also shows the upper (actually, the exact) bound of the

that the approximation error due to neglecting the stat@pproximation error between the original system and the

x(54:400) is very small. In this example, we can applytruncated system.

(18) with equality in Theorem 4 since every elementas From Fig. 8, we find that each element®have the value

positive. In fact, the minimum of: satisfying (20) is given of almost“zero” for aroundk > 40, and the elements ofl

by k = 53 whene = 0.05. From Fig. 6, where the solid andC have relatively dispersed values for around< 150

line denotes the Bode diagram of the original systefp{ due to the complexity of the graph. This induces a negligible

th order) and the symbolsdenote that of the approximated approximation error for around > 40.

system atc = 53 (53-th order), we see that the both Bode In fact, the minimum values of satisfying (20) are given
diagrams are almost identical. by k£ = 33 whene = 0.05. In Fig. 9, the Bode diagram of

. o the original system is denoted by the solid line, that of the
B. Model reduction for diffusion system on complex ”etworii?uncated system by. It turns out from this figure that the

Next, we consider a diffusion system on the compleixnput-output property of the original system is appropriately

network of a Barabasi-Albert model (exponene) in Fig. 7,  approximated via the proposed method.
which is well-known as a graph satisfying the scale-free and
small-world property [3]. This graph h&$0 nodes and00 V. CONCLUSION
edges in which some hubs are included and the first nodeln this paper, we proposed a model order reduction method
is connected to every other node withinedges. Since in for SISO linear dynamical networks. In this method, the



Bode Diagran [Values of element of matriced and(]
- - Reaction term * * Diffusion ter
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Fig. 6. Bode diagram

Fig. 8. Plots of values of matrices and upper bound of the approximation
error
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structure of spatially one-dimensional reaction-diffusion that
a SISO dynamical network has is extracted by way of Fig. 9. Bode diagrams
a Householder transformation ordering the state variables
according to the distance from the source (i.e., an input)
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